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SUMMARY

The report gives a defining description of the standard libraries of the programming language Scheme.

This report frequently refers back to the Revised6 Report on the Algorithmic Language Scheme [11]; references to the
report are identified by designations such as “report section” or “report chapter”.

Parts of the library report are derived from earlier revisions of the report [8]. We gratefully acknowledge their authors
for their contributions. More detailed information on authorship can be found at the beginning of the Revised6 Report
on the Algorithmic Language Scheme.

We intend this report to belong to the entire Scheme community, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.
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1. Unicode

The procedures exported by the (rnrs unicode (6)) li-
brary provide access to some aspects of the Unicode seman-
tics for characters and strings: category information, case-
independent comparisons, case mappings, and normaliza-
tion [12].

Some of the procedures that operate on characters or
strings ignore the difference between upper case and lower
case. These procedures have “-ci” (for “case insensitive”)
embedded in their names.

1.1. Characters

(char-upcase char) procedure
(char-downcase char) procedure
(char-titlecase char) procedure
(char-foldcase char) procedure

These procedures take a character argument and return a
character result. If the argument is an upper-case or title-
case character, and if there is a single character that is its
lower-case form, then char-downcase returns that charac-
ter. If the argument is a lower-case or title-case character,
and there is a single character that is its upper-case form,
then char-upcase returns that character. If the argument
is a lower-case or upper-case character, and there is a single
character that is its title-case form, then char-titlecase

returns that character. If the argument is not a title-case
character and there is no single character that is its title-
case form, then char-titlecase returns the upper-case
form of the argument. Finally, if the character has a case-
folded character, then char-foldcase returns that charac-
ter. Otherwise the character returned is the same as the ar-
gument. For Turkic characters İ (#\x130) and ı (#\x131),
char-foldcase behaves as the identity function; otherwise
char-foldcase is the same as char-downcase composed
with char-upcase.

(char-upcase #\i) =⇒ #\I

(char-downcase #\i) =⇒ #\i

(char-titlecase #\i) =⇒ #\I

(char-foldcase #\i) =⇒ #\i

(char-upcase #\ß) =⇒ #\ß

(char-downcase #\ß) =⇒ #\ß

(char-titlecase #\ß) =⇒ #\ß

(char-foldcase #\ß) =⇒ #\ß

(char-upcase #\Σ) =⇒ #\Σ
(char-downcase #\Σ) =⇒ #\σ
(char-titlecase #\Σ) =⇒ #\Σ
(char-foldcase #\Σ) =⇒ #\σ

(char-upcase #\ς) =⇒ #\Σ
(char-downcase #\ς) =⇒ #\ς

(char-titlecase #\ς) =⇒ #\Σ
(char-foldcase #\ς) =⇒ #\σ

Note: Note that char-titlecase does not always return a

title-case character.

Note: These procedures are consistent with Unicode’s locale-
independent mappings from scalar values to scalar values
for upcase, downcase, titlecase, and case-folding operations.
These mappings can be extracted from UnicodeData.txt and
CaseFolding.txt from the Unicode Consortium, ignoring Tur-
kic mappings in the latter.

Note that these character-based procedures are an incomplete

approximation to case conversion, even ignoring the user’s

locale. In general, case mappings require the context of a

string, both in arguments and in result. The string-upcase,

string-downcase, string-titlecase, and string-foldcase

procedures (section 1.2) perform more general case conversion.

(char-ci=? char1 char2 char3 . . . ) procedure
(char-ci<? char1 char2 char3 . . . ) procedure
(char-ci>? char1 char2 char3 . . . ) procedure
(char-ci<=? char1 char2 char3 . . . ) procedure
(char-ci>=? char1 char2 char3 . . . ) procedure

These procedures are similar to char=?, etc., but operate
on the case-folded versions of the characters.

(char-ci<? #\z #\Z) =⇒ #f

(char-ci=? #\z #\Z) =⇒ #t

(char-ci=? #\ς #\σ) =⇒ #t

(char-alphabetic? char) procedure
(char-numeric? char) procedure
(char-whitespace? char) procedure
(char-upper-case? char) procedure
(char-lower-case? char) procedure
(char-title-case? char) procedure

These procedures return #t if their arguments are alpha-
betic, numeric, whitespace, upper-case, lower-case, or title-
case characters, respectively; otherwise they return #f.

A character is alphabetic if it has the Unicode “Alpha-
betic” property. A character is numeric if it has the Uni-
code “Numeric” property. A character is whitespace if has
the Unicode “White Space” property. A character is upper
case if it has the Unicode “Uppercase” property, lower case
if it has the “Lowercase” property, and title case if it is in
the Lt general category.

(char-alphabetic? #\a) =⇒ #t

(char-numeric? #\1) =⇒ #t

(char-whitespace? #\space) =⇒ #t

(char-whitespace? #\x00A0) =⇒ #t

(char-upper-case? #\Σ) =⇒ #t

(char-lower-case? #\σ) =⇒ #t
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(char-lower-case? #\x00AA) =⇒ #t

(char-title-case? #\I) =⇒ #f

(char-title-case? #\x01C5) =⇒ #t

(char-general-category char) procedure

Returns a symbol representing the Unicode general cate-
gory of char , one of Lu, Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl,
No, Ps, Pe, Pi, Pf, Pd, Pc, Po, Sc, Sm, Sk, So, Zs, Zp, Zl,
Cc, Cf, Cs, Co, or Cn.

(char-general-category #\a) =⇒ Ll

(char-general-category #\space)

=⇒ Zs

(char-general-category #\x10FFFF)

=⇒ Cn

1.2. Strings

(string-upcase string) procedure
(string-downcase string) procedure
(string-titlecase string) procedure
(string-foldcase string) procedure

These procedures take a string argument and return a
string result. They are defined in terms of Unicode’s locale-
independent case mappings from Unicode scalar-value se-
quences to scalar-value sequences. In particular, the length
of the result string can be different from the length of the
input string. When the specified result is equal in the sense
of string=? to the argument, these procedures may return
the argument instead of a newly allocated string.

The string-upcase procedure converts a string to upper
case; string-downcase converts a string to lower case.
The string-foldcase procedure converts the string to its
case-folded counterpart, using the full case-folding map-
ping, but without the special mappings for Turkic lan-
guages. The string-titlecase procedure converts the
first cased character of each word, and downcases all other
cased characters.

(string-upcase "Hi") =⇒ "HI"

(string-downcase "Hi") =⇒ "hi"

(string-foldcase "Hi") =⇒ "hi"

(string-upcase "Straße") =⇒ "STRASSE"

(string-downcase "Straße") =⇒ "straße"

(string-foldcase "Straße") =⇒ "strasse"

(string-downcase "STRASSE") =⇒ "strasse"

(string-downcase "Σ") =⇒ "σ"

; Chi Alpha Omicron Sigma:
(string-upcase "XAOΣ") =⇒ "XAOΣ"

(string-downcase "XAOΣ") =⇒ "χαoς"

(string-downcase "XAOΣΣ") =⇒ "χαoσς"
(string-downcase "XAOΣ Σ")=⇒ "χαoς σ"
(string-foldcase "XAOΣΣ") =⇒ "χαoσσ"
(string-upcase "χαoς") =⇒ "XAOΣ"

(string-upcase "χαoσ") =⇒ "XAOΣ"

(string-titlecase "kNock KNoCK")

=⇒ "Knock Knock"

(string-titlecase "who’s there?")

=⇒ "Who’s There?"

(string-titlecase "r6rs") =⇒ "R6rs"

(string-titlecase "r6rs") =⇒ "R6rs"

Note: The case mappings needed for implementing these
procedures can be extracted from UnicodeData.txt,
SpecialCasing.txt, WordBreakProperty.txt, and
CaseFolding.txt from the Unicode Consortium.

Since these procedures are locale-independent, they may not be

appropriate for some locales.

Note: Word breaking, as needed for the correct casing of Σ and

for string-titlecase, is specified in Unicode Standard Annex

#29 [5].

(string-ci=? string1 string2 string3 . . . ) procedure
(string-ci<? string1 string2 string3 . . . ) procedure
(string-ci>? string1 string2 string3 . . . ) procedure
(string-ci<=? string1 string2 string3 . . . ) procedure
(string-ci>=? string1 string2 string3 . . . ) procedure

These procedures are similar to string=?, etc., but operate
on the case-folded versions of the strings.

(string-ci<? "z" "Z") =⇒ #f

(string-ci=? "z" "Z") =⇒ #t

(string-ci=? "Straße" "Strasse")

=⇒ #t

(string-ci=? "Straße" "STRASSE")

=⇒ #t

(string-ci=? "XAOΣ" "χαoσ")
=⇒ #t

(string-normalize-nfd string) procedure
(string-normalize-nfkd string) procedure
(string-normalize-nfc string) procedure
(string-normalize-nfkc string) procedure

These procedures take a string argument and return a
string result, which is the input string normalized to Uni-
code normalization form D, KD, C, or KC, respectively.
When the specified result is equal in the sense of string=?
to the argument, these procedures may return the argu-
ment instead of a newly allocated string.

(string-normalize-nfd "\xE9;")

=⇒ "\x65;\x301;"

(string-normalize-nfc "\xE9;")

=⇒ "\xE9;"

(string-normalize-nfd "\x65;\x301;")
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=⇒ "\x65;\x301;"

(string-normalize-nfc "\x65;\x301;")

=⇒ "\xE9;"

2. Bytevectors

Many applications deal with blocks of binary data by ac-
cessing them in various ways—extracting signed or un-
signed numbers of various sizes. Therefore, the (rnrs

bytevectors (6)) library provides a single type for blocks
of binary data with multiple ways to access that data. It
deals with integers and floating-point representations in
various sizes with specified endianness.

Bytevectors are objects of a disjoint type. Conceptually,
a bytevector represents a sequence of 8-bit bytes. The de-
scription of bytevectors uses the term byte for an exact in-
teger object in the interval {−128, . . . , 127} and the term
octet for an exact integer object in the interval {0, . . . , 255}.
A byte corresponds to its two’s complement representation
as an octet.

The length of a bytevector is the number of bytes it con-
tains. This number is fixed. A valid index into a bytevector
is an exact, non-negative integer object less than the length
of the bytevector. The first byte of a bytevector has index
0; the last byte has an index one less than the length of
the bytevector.

Generally, the access procedures come in different flavors
according to the size of the represented integer and the
endianness of the representation. The procedures also dis-
tinguish signed and unsigned representations. The signed
representations all use two’s complement.

Like string literals, literals representing bytevectors do not
need to be quoted:

#vu8(12 23 123) =⇒ #vu8(12 23 123)

2.1. Endianness

Many operations described in this chapter accept an en-
dianness argument. Endianness describes the encoding
of exact integer objects as several contiguous bytes in a
bytevector [4]. For this purpose, the binary representation
of the integer object is split into consecutive bytes. The
little-endian encoding places the least significant byte of
an integer first, with the other bytes following in increas-
ing order of significance. The big-endian encoding places
the most significant byte of an integer first, with the other
bytes following in decreasing order of significance.

This terminology also applies to IEEE-754 numbers:
IEEE 754 describes how to represent a floating-point num-
ber as an exact integer object, and endianness describes
how the bytes of such an integer are laid out in a bytevec-
tor.

Note: Little- and big-endianness are only the most common

kinds of endianness. Some architectures distinguish between

the endianness at different levels of a binary representation.

2.2. General operations

(endianness 〈endianness symbol〉) syntax

The name of 〈endianness symbol〉 must be a symbol
describing an endianness. An implementation must
support at least the symbols big and little, but
may support other endianness symbols. (endianness

〈endianness symbol〉) evaluates to the symbol named
〈endianness symbol〉. Whenever one of the procedures op-
erating on bytevectors accepts an endianness as an argu-
ment, that argument must be one of these symbols. It is
a syntax violation for 〈endianness symbol〉 to be anything
other than an endianness symbol supported by the imple-
mentation.

Note: Implementors should use widely accepted designations

for endianness symbols other than big and little.

Note: Only the name of 〈endianness symbol〉 is significant.

(native-endianness) procedure

Returns the endianness symbol associated implemen-
tation’s preferred endianness (usually that of the un-
derlying machine architecture). This may be any
〈endianness symbol〉, including a symbol other than big

and little.

(bytevector? obj) procedure

Returns #t if obj is a bytevector, otherwise returns #f.

(make-bytevector k) procedure
(make-bytevector k fill) procedure

Returns a newly allocated bytevector of k bytes.

If the fill argument is missing, the initial contents of the
returned bytevector are unspecified.

If the fill argument is present, it must be an exact inte-
ger object in the interval {−128, . . . 255} that specifies the
initial value for the bytes of the bytevector: If fill is pos-
itive, it is interpreted as an octet; if it is negative, it is
interpreted as a byte.

(bytevector-length bytevector) procedure

Returns, as an exact integer object, the number of bytes
in bytevector .
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(bytevector=? bytevector1 bytevector2) procedure

Returns #t if bytevector1 and bytevector2 are equal—that
is, if they have the same length and equal bytes at all valid
indices. It returns #f otherwise.

(bytevector-fill! bytevector fill) procedure

The fill argument is as in the description of the
make-bytevector procedure. The bytevector-fill!

procedure stores fill in every element of bytevector and
returns unspecified values. Analogous to vector-fill!.

(bytevector-copy! source source-start procedure
target target-start k)

Source and target must be bytevectors. Source-start ,
target-start , and k must be non-negative exact integer ob-
jects that satisfy

0 ≤ source-start ≤ source-start + k ≤ lsource
0 ≤ target-start ≤ target-start + k ≤ ltarget

where lsource is the length of source and ltarget is the
length of target .

The bytevector-copy! procedure copies the bytes from
source at indices

source-start , . . . , source-start + k − 1

to consecutive indices in target starting at target-index .

This must work even if the memory regions for the source
and the target overlap, i.e., the bytes at the target location
after the copy must be equal to the bytes at the source
location before the copy.

This returns unspecified values.

(let ((b (u8-list->bytevector ’(1 2 3 4 5 6 7 8))))

(bytevector-copy! b 0 b 3 4)

(bytevector->u8-list b)) =⇒ (1 2 3 1 2 3 4 8)

(bytevector-copy bytevector) procedure

Returns a newly allocated copy of bytevector .

2.3. Operations on bytes and octets

(bytevector-u8-ref bytevector k) procedure
(bytevector-s8-ref bytevector k) procedure

K must be a valid index of bytevector .

The bytevector-u8-ref procedure returns the byte at in-
dex k of bytevector , as an octet.

The bytevector-s8-ref procedure returns the byte at in-
dex k of bytevector , as a (signed) byte.

(let ((b1 (make-bytevector 16 -127))

(b2 (make-bytevector 16 255)))

(list

(bytevector-s8-ref b1 0)

(bytevector-u8-ref b1 0)

(bytevector-s8-ref b2 0)

(bytevector-u8-ref b2 0)))

=⇒ (-127 129 -1 255)

(bytevector-u8-set! bytevector k octet) procedure
(bytevector-s8-set! bytevector k byte) procedure

K must be a valid index of bytevector .

The bytevector-u8-set! procedure stores octet in ele-
ment k of bytevector .

The bytevector-s8-set! procedure stores the two’s-
complement representation of byte in element k of
bytevector .

Both procedures return unspecified values.

(let ((b (make-bytevector 16 -127)))

(bytevector-s8-set! b 0 -126)

(bytevector-u8-set! b 1 246)

(list

(bytevector-s8-ref b 0)

(bytevector-u8-ref b 0)

(bytevector-s8-ref b 1)

(bytevector-u8-ref b 1)))

=⇒ (-126 130 -10 246)

(bytevector->u8-list bytevector) procedure
(u8-list->bytevector list) procedure

List must be a list of octets.

The bytevector->u8-list procedure returns a newly al-
located list of the octets of bytevector in the same order.

The u8-list->bytevector procedure returns a newly al-
located bytevector whose elements are the elements of list
list , in the same order. It is analogous to list->vector.

2.4. Operations on integers of arbitrary size

(bytevector-uint-ref bytevector k endianness size)
procedure

(bytevector-sint-ref bytevector k endianness size)
procedure

(bytevector-uint-set! bytevector k n endianness size)
procedure

(bytevector-sint-set! bytevector k n endianness size)
procedure

Size must be a positive exact integer object. K , . . . , k +
size − 1 must be valid indices of bytevector .
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The bytevector-uint-ref procedure retrieves the exact
integer object corresponding to the unsigned representa-
tion of size size and specified by endianness at indices
k , . . . , k + size − 1.

The bytevector-sint-ref procedure retrieves the exact
integer object corresponding to the two’s-complement rep-
resentation of size size and specified by endianness at in-
dices k , . . . , k + size − 1.

For bytevector-uint-set!, n must be an exact integer
object in the interval {0, . . . , 256size − 1}.

The bytevector-uint-set! procedure stores the unsigned
representation of size size and specified by endianness into
bytevector at indices k , . . . , k + size − 1.

For bytevector-sint-set!, n must be an exact inte-
ger object in the interval {−256size/2, . . . , 256size/2 − 1}.
bytevector-sint-set! stores the two’s-complement rep-
resentation of size size and specified by endianness into
bytevector at indices k , . . . , k + size − 1.

The . . . -set! procedures return unspecified values.

(define b (make-bytevector 16 -127))

(bytevector-uint-set! b 0 (- (expt 2 128) 3)

(endianness little) 16)

(bytevector-uint-ref b 0 (endianness little) 16)

=⇒
#xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness little) 16)

=⇒ -3

(bytevector->u8-list b)

=⇒ (253 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255)

(bytevector-uint-set! b 0 (- (expt 2 128) 3)

(endianness big) 16)

(bytevector-uint-ref b 0 (endianness big) 16)

=⇒
#xfffffffffffffffffffffffffffffffd

(bytevector-sint-ref b 0 (endianness big) 16)

=⇒ -3

(bytevector->u8-list b)

=⇒ (255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253))

(bytevector->uint-list bytevector endianness size)
procedure

(bytevector->sint-list bytevector endianness size)
procedure

(uint-list->bytevector list endianness size)
procedure

(sint-list->bytevector list endianness size)
procedure

Size must be a positive exact integer object. For
uint-list->bytevector, list must be a list of exact in-
teger objects in the interval {0, . . . , 256size − 1}. For
sint-list->bytevector, list must be a list of exact inte-
ger objects in the interval {−256size/2, . . . , 256size/2− 1}.
The length of bytevector must be divisible by size.

These procedures convert between lists of integer objects
and their consecutive representations according to size and
endianness in the bytevector objects in the same way as
bytevector->u8-list and u8-list->bytevector do for
one-byte representations.

(let ((b (u8-list->bytevector ’(1 2 3 255 1 2 1 2))))

(bytevector->sint-list b (endianness little) 2))

=⇒ (513 -253 513 513)

(let ((b (u8-list->bytevector ’(1 2 3 255 1 2 1 2))))

(bytevector->uint-list b (endianness little) 2))

=⇒ (513 65283 513 513)

2.5. Operations on 16-bit integers

(bytevector-u16-ref bytevector k endianness)
procedure

(bytevector-s16-ref bytevector k endianness)
procedure

(bytevector-u16-native-ref bytevector k) procedure
(bytevector-s16-native-ref bytevector k) procedure
(bytevector-u16-set! bytevector k n endianness)

procedure
(bytevector-s16-set! bytevector k n endianness)

procedure
(bytevector-u16-native-set! bytevector k n)

procedure
(bytevector-s16-native-set! bytevector k n)

procedure

K must be a valid index of bytevector ; so must k + 1.
For bytevector-u16-set! and bytevector-u16-native-

set!, n must be an exact integer object in the in-
terval {0, . . . , 216 − 1}. For bytevector-s16-set! and
bytevector-s16-native-set!, n must be an exact inte-
ger object in the interval {−215, . . . , 215 − 1}.
These retrieve and set two-byte representations of num-
bers at indices k and k + 1, according to the endianness
specified by endianness. The procedures with u16 in their
names deal with the unsigned representation; those with
s16 in their names deal with the two’s-complement repre-
sentation.

The procedures with native in their names employ the
native endianness, and work only at aligned indices: k must
be a multiple of 2.
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The . . . -set! procedures return unspecified values.

(define b

(u8-list->bytevector

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytevector-u16-ref b 14 (endianness little))

=⇒ 65023

(bytevector-s16-ref b 14 (endianness little))

=⇒ -513

(bytevector-u16-ref b 14 (endianness big))

=⇒ 65533

(bytevector-s16-ref b 14 (endianness big))

=⇒ -3

(bytevector-u16-set! b 0 12345 (endianness little))

(bytevector-u16-ref b 0 (endianness little))

=⇒ 12345

(bytevector-u16-native-set! b 0 12345)

(bytevector-u16-native-ref b 0)=⇒ 12345

(bytevector-u16-ref b 0 (endianness little))

=⇒ unspecified

2.6. Operations on 32-bit integers

(bytevector-u32-ref bytevector k endianness)
procedure

(bytevector-s32-ref bytevector k endianness)
procedure

(bytevector-u32-native-ref bytevector k) procedure
(bytevector-s32-native-ref bytevector k) procedure
(bytevector-u32-set! bytevector k n endianness)

procedure
(bytevector-s32-set! bytevector k n endianness)

procedure
(bytevector-u32-native-set! bytevector k n)

procedure
(bytevector-s32-native-set! bytevector k n)

procedure

K , . . . , k + 3 must be valid indices of bytevector .
For bytevector-u32-set! and bytevector-u32-native-

set!, n must be an exact integer object in the in-
terval {0, . . . , 232 − 1}. For bytevector-s32-set! and
bytevector-s32-native-set!, n must be an exact inte-
ger object in the interval {−231, . . . , 231 − 1}.

These retrieve and set four-byte representations of numbers
at indices k , . . . , k +3, according to the endianness specified
by endianness. The procedures with u32 in their names
deal with the unsigned representation; those with s32 with
the two’s-complement representation.

The procedures with native in their names employ the
native endianness, and work only at aligned indices: k must
be a multiple of 4.

The . . . -set! procedures return unspecified values.

(define b

(u8-list->bytevector

’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytevector-u32-ref b 12 (endianness little))

=⇒ 4261412863

(bytevector-s32-ref b 12 (endianness little))

=⇒ -33554433

(bytevector-u32-ref b 12 (endianness big))

=⇒ 4294967293

(bytevector-s32-ref b 12 (endianness big))

=⇒ -3

2.7. Operations on 64-bit integers

(bytevector-u64-ref bytevector k endianness)
procedure

(bytevector-s64-ref bytevector k endianness)
procedure

(bytevector-u64-native-ref bytevector k) procedure
(bytevector-s64-native-ref bytevector k) procedure
(bytevector-u64-set! bytevector k n endianness)

procedure
(bytevector-s64-set! bytevector k n endianness)

procedure
(bytevector-u64-native-set! bytevector k n)

procedure
(bytevector-s64-native-set! bytevector k n)

procedure

K , . . . , k + 7 must be valid indices of bytevector .
For bytevector-u64-set! and bytevector-u64-native-

set!, n must be an exact integer object in the in-
terval {0, . . . , 264 − 1}. For bytevector-s64-set! and
bytevector-s64-native-set!, n must be an exact inte-
ger object in the interval {−263, . . . , 263 − 1}.

These retrieve and set eight-byte representations of num-
bers at indices k , . . . , k + 7, according to the endianness
specified by endianness. The procedures with u64 in their
names deal with the unsigned representation; those with
s64 with the two’s-complement representation.

The procedures with native in their names employ the
native endianness, and work only at aligned indices: k must
be a multiple of 8.

The . . . -set! procedures return unspecified values.

(define b

(u8-list->bytevector
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’(255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 253)))

(bytevector-u64-ref b 8 (endianness little))

=⇒ 18302628885633695743

(bytevector-s64-ref b 8 (endianness little))

=⇒ -144115188075855873

(bytevector-u64-ref b 8 (endianness big))

=⇒ 18446744073709551613

(bytevector-s64-ref b 8 (endianness big))

=⇒ -3

2.8. Operations on IEEE-754 representa-
tions

(bytevector-ieee-single-native-ref bytevector k)
procedure

(bytevector-ieee-single-ref bytevector k endianness)
procedure

K , . . . , k + 3 must be valid indices of bytevector . For
bytevector-ieee-single-native-ref, k must be a mul-
tiple of 4.

These procedures return the inexact real number object
that best represents the IEEE-754 single-precision number
represented by the four bytes beginning at index k .

(bytevector-ieee-double-native-ref bytevector k)
procedure

(bytevector-ieee-double-ref bytevector k endianness)
procedure

K , . . . , k + 7 must be valid indices of bytevector . For
bytevector-ieee-double-native-ref, k must be a mul-
tiple of 8.

These procedures return the inexact real number object
that best represents the IEEE-754 double-precision number
represented by the eight bytes beginning at index k .

(bytevector-ieee-single-native-set! bytevector k x)
procedure

(bytevector-ieee-single-set! bytevector procedure
k x endianness)

K , . . . , k + 3 must be valid indices of bytevector . For
bytevector-ieee-single-native-set!, k must be a
multiple of 4.

These procedures store an IEEE-754 single-precision repre-
sentation of x into elements k through k + 3 of bytevector ,
and return unspecified values.

(bytevector-ieee-double-native-set! bytevector k x)
procedure

(bytevector-ieee-double-set! bytevector procedure
k x endianness)

K , . . . , k + 7 must be valid indices of bytevector . For
bytevector-ieee-double-native-set!, k must be a
multiple of 8.

These procedures store an IEEE-754 double-precision rep-
resentation of x into elements k through k +7 of bytevector ,
and return unspecified values.

2.9. Operations on strings

This section describes procedures that convert between
strings and bytevectors containing Unicode encodings of
those strings. When decoding bytevectors, encoding er-
rors are handled as with the replace semantics of textual
I/O (see section 8.2.4): If an invalid or incomplete char-
acter encoding is encountered, then the replacement char-
acter U+FFFD is appended to the string being generated,
an appropriate number of bytes are ignored, and decoding
continues with the following bytes.

(string->utf8 string) procedure

Returns a newly allocated (unless empty) bytevector that
contains the UTF-8 encoding of the given string.

(string->utf16 string) procedure
(string->utf16 string endianness) procedure

If endianness is specified, it must be the symbol big or the
symbol little. The string->utf16 procedure returns a
newly allocated (unless empty) bytevector that contains
the UTF-16BE or UTF-16LE encoding of the given string
(with no byte-order mark). If endianness is not specified
or is big, then UTF-16BE is used. If endianness is little,
then UTF-16LE is used.

(string->utf32 string) procedure
(string->utf32 string endianness) procedure

If endianness is specified, it must be the symbol big or the
symbol little. The string->utf32 procedure returns a
newly allocated (unless empty) bytevector that contains
the UTF-32BE or UTF-32LE encoding of the given string
(with no byte mark). If endianness is not specified or is
big, then UTF-32BE is used. If endianness is little,
then UTF-32LE is used.

(utf8->string bytevector) procedure

Returns a newly allocated (unless empty) string whose
character sequence is encoded by the given bytevector.
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(utf16->string bytevector endianness) procedure
(utf16->string bytevector procedure

endianness endianness-mandatory?)

Endianness must be the symbol big or the symbol little.
The utf16->string procedure returns a newly allocated
(unless empty) string whose character sequence is encoded
by the given bytevector. Bytevector is decoded according
to UTF-16, UTF-16BE, UTF-16LE, or a fourth encoding
scheme that differs from all three of those as follows: If
endianness-mandatory? is absent or #f, utf16->string

determines the endianness according to a UTF-16 BOM at
the beginning of bytevector if a BOM is present; in this
case, the BOM is not decoded as a character. Also in this
case, if no UTF-16 BOM is present, endianness specifies
the endianness of the encoding. If endianness-mandatory?
is a true value, endianness specifies the endianness of the
encoding, and any UTF-16 BOM in the encoding is de-
coded as a regular character.

Note: A UTF-16 BOM is either a sequence of bytes #xFE,

#xFF specifying big and UTF-16BE, or #xFF, #xFE specifying

little and UTF-16LE.

(utf32->string bytevector endianness) procedure
(utf32->string bytevector procedure

endianness endianness-mandatory?)

Endianness must be the symbol big or the symbol little.
The utf32->string procedure returns a newly allocated
(unless empty) string whose character sequence is encoded
by the given bytevector. Bytevector is decoded according
to UTF-32, UTF-32BE, UTF-32LE, or a fourth encoding
scheme that differs from all three of those as follows: If
endianness-mandatory? is absent or #f, utf32->string

determines the endianness according to a UTF-32 BOM at
the beginning of bytevector if a BOM is present; in this
case, the BOM is not decoded as a character. Also in this
case, if no UTF-32 BOM is present, endianness specifies
the endianness of the encoding. If endianness-mandatory?
is a true value, endianness specifies the endianness of the
encoding, and any UTF-32 BOM in the encoding is de-
coded as a regular character.

Note: A UTF-32 BOM is either a sequence of bytes #x00, #x00,

#xFE, #xFF specifying big and UTF-32BE, or #xFF, #xFE,

#x00, #x00, specifying little and UTF-32LE.

3. List utilities

This chapter describes the (rnrs lists (6)) library,
which contains various useful procedures that operate on
lists.

(find proc list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list . The find procedure applies

proc to the elements of list in order. If proc returns a
true value for an element, find immediately returns that
element. If proc returns #f for all elements of the list, find
returns #f. Proc is always called in the same dynamic
environment as find itself.

(find even? ’(3 1 4 1 5 9)) =⇒ 4

(find even? ’(3 1 5 1 5 9)) =⇒ #f

Implementation responsibilities: The implementation must
check that list is a chain of pairs up to the found element, or
that it is indeed a list if no element is found. It should not
check that it is a chain of pairs beyond the found element.
The implementation must check the restrictions on proc
to the extent performed by applying it as described. An
implementation may check whether proc is an appropriate
argument before applying it.

(for-all proc list1 list2 . . . listn) procedure
(exists proc list1 list2 . . . listn) procedure

The lists should all have the same length, and proc should
accept n arguments and return a single value. Proc should
not mutate the list arguments.

For natural numbers i = 0, 1, . . ., the for-all procedure
successively applies proc to arguments x1

i . . . x
n
i , where xj

i is
the ith element of listj , until #f is returned. If proc returns
true values for all but the last element of list1, for-all

performs a tail call of proc on the kth elements, where k is
the length of list1. If proc returns #f on any set of elements,
for-all returns #f after the first such application of proc.
If the lists are all empty, for-all returns #t.

For natural numbers i = 0, 1, . . ., the exists procedure
applies proc successively to arguments x1

i . . . x
n
i , where xj

i

is the ith element of listj , until a true value is returned.
If proc returns #f for all but the last elements of the lists,
exists performs a tail call of proc on the kth elements,
where k is the length of list1. If proc returns a true value
on any set of elements, exists returns that value after the
first such application of proc. If the lists are all empty,
exists returns #f.

Proc is always called in the same dynamic environment as
for-all or, respectively, exists itself.

(for-all even? ’(3 1 4 1 5 9))

=⇒ #f

(for-all even? ’(2 4 14)) =⇒ #t

(for-all even? ’(2 4 14 . 9))

=⇒ &assertion exception
(for-all (lambda (n) (and (even? n) n))

’(2 4 14))

=⇒ 14

(for-all < ’(1 2 3) ’(2 3 4))

=⇒ #t

(for-all < ’(1 2 4) ’(2 3 4))

=⇒ #f
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(exists even? ’(3 1 4 1 5 9))

=⇒ #t

(exists even? ’(3 1 1 5 9)) =⇒ #f

(exists even? ’(3 1 1 5 9 . 2))

=⇒ &assertion exception
(exists (lambda (n) (and (even? n) n)) ’(2 1 4 14))

=⇒ 2

(exists < ’(1 2 4) ’(2 3 4))=⇒ #t

(exists > ’(1 2 3) ’(2 3 4))=⇒ #f

Implementation responsibilities: The implementation must
check that the lists are chains of pairs to the extent neces-
sary to determine the return value. If this requires travers-
ing the lists entirely, the implementation should check that
the lists all have the same length. If not, it should not
check that the lists are chains of pairs beyond the traver-
sal. The implementation must check the restrictions on
proc to the extent performed by applying it as described.
An implementation may check whether proc is an appro-
priate argument before applying it.

(filter proc list) procedure
(partition proc list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list .

The filter procedure applies proc to each element of list
and returns a list of the elements of list for which proc
returned a true value. The partition procedure also ap-
plies proc to each element of list , but returns two values,
the first one a list of the elements of list for which proc re-
turned a true value, and the second a list of the elements of
list for which proc returned #f. In both cases, the elements
of the result list(s) are in the same order as they appear in
the input list. Proc is always called in the same dynamic
environment as filter or, respectively, partition itself.
If multiple returns occur from filter or partitions, the
return values returned by earlier returns are not mutated.

(filter even? ’(3 1 4 1 5 9 2 6))

=⇒ (4 2 6)

(partition even? ’(3 1 4 1 5 9 2 6))

=⇒ (4 2 6) (3 1 1 5 9) ; two values

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
whether proc is an appropriate argument before applying
it.

(fold-left combine nil list1 list2 . . . listn) procedure

The lists should all have the same length. Combine must
be a procedure. It should accept one more argument than

there are lists and return a single value. It should not
mutate the list arguments. The fold-left procedure iter-
ates the combine procedure over an accumulator value and
the elements of the lists from left to right, starting with
an accumulator value of nil . More specifically, fold-left
returns nil if the lists are empty. If they are not empty,
combine is first applied to nil and the respective first el-
ements of the lists in order. The result becomes the new
accumulator value, and combine is applied to the new accu-
mulator value and the respective next elements of the list .
This step is repeated until the end of the list is reached;
then the accumulator value is returned. Combine is always
called in the same dynamic environment as fold-left it-
self.

(fold-left + 0 ’(1 2 3 4 5))=⇒ 15

(fold-left (lambda (a e) (cons e a)) ’()

’(1 2 3 4 5))

=⇒ (5 4 3 2 1)

(fold-left (lambda (count x)

(if (odd? x) (+ count 1) count))

0

’(3 1 4 1 5 9 2 6 5 3))

=⇒ 7

(fold-left (lambda (max-len s)

(max max-len (string-length s)))

0

’("longest" "long" "longer"))

=⇒ 7

(fold-left cons ’(q) ’(a b c))

=⇒ ((((q) . a) . b) . c)

(fold-left + 0 ’(1 2 3) ’(4 5 6))

=⇒ 21

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on combine to
the extent performed by applying it as described. An im-
plementation may check whether combine is an appropriate
argument before applying it.

(fold-right combine nil list1 list2 . . . listn) procedure

The lists should all have the same length. Combine must
be a procedure. It should accept one more argument than
there are lists and return a single value. Combine should
not mutate the list arguments. The fold-right proce-
dure iterates the combine procedure over the elements of
the lists from right to left and an accumulator value, start-
ing with an accumulator value of nil . More specifically,
fold-right returns nil if the lists are empty. If they are
not empty, combine is first applied to the respective last
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elements of the lists in order and nil . The result becomes
the new accumulator value, and combine is applied to the
respective previous elements of the lists and the new accu-
mulator value. This step is repeated until the beginning of
the list is reached; then the accumulator value is returned.
Proc is always called in the same dynamic environment as
fold-right itself.

(fold-right + 0 ’(1 2 3 4 5))

=⇒ 15

(fold-right cons ’() ’(1 2 3 4 5))

=⇒ (1 2 3 4 5)

(fold-right (lambda (x l)

(if (odd? x) (cons x l) l))

’()

’(3 1 4 1 5 9 2 6 5))

=⇒ (3 1 1 5 9 5)

(fold-right cons ’(q) ’(a b c))

=⇒ (a b c q)

(fold-right + 0 ’(1 2 3) ’(4 5 6))

=⇒ 21

Implementation responsibilities: The implementation
should check that the lists all have the same length. The
implementation must check the restrictions on combine to
the extent performed by applying it as described. An im-
plementation may check whether combine is an appropriate
argument before applying it.

(remp proc list) procedure
(remove obj list) procedure
(remv obj list) procedure
(remq obj list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list .

Each of these procedures returns a list of the elements of
list that do not satisfy a given condition. The remp pro-
cedure applies proc to each element of list and returns a
list of the elements of list for which proc returned #f. Proc
is always called in the same dynamic environment as remp
itself. The remove, remv, and remq procedures return a
list of the elements that are not obj . The remq procedure
uses eq? to compare obj with the elements of list , while
remv uses eqv? and remove uses equal?. The elements of
the result list are in the same order as they appear in the
input list. If multiple returns occur from remp, the return
values returned by earlier returns are not mutated.

(remp even? ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 1 1 5 9 5)

(remove 1 ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 4 5 9 2 6 5)

(remv 1 ’(3 1 4 1 5 9 2 6 5))

=⇒ (3 4 5 9 2 6 5)

(remq ’foo ’(bar foo baz)) =⇒ (bar baz)

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
whether proc is an appropriate argument before applying
it.

(memp proc list) procedure
(member obj list) procedure
(memv obj list) procedure
(memq obj list) procedure

Proc should accept one argument and return a single value.
Proc should not mutate list .

These procedures return the first sublist of list whose car
satisfies a given condition, where the sublists of lists are
the lists returned by (list-tail list k) for k less than
the length of list . The memp procedure applies proc to
the cars of the sublists of list until it finds one for which
proc returns a true value. Proc is always called in the
same dynamic environment as memp itself. The member,
memv, and memq procedures look for the first occurrence
of obj . If list does not contain an element satisfying the
condition, then #f (not the empty list) is returned. The
member procedure uses equal? to compare obj with the
elements of list , while memv uses eqv? and memq uses eq?.

(memp even? ’(3 1 4 1 5 9 2 6 5))

=⇒ (4 1 5 9 2 6 5)

(memq ’a ’(a b c)) =⇒ (a b c)

(memq ’b ’(a b c)) =⇒ (b c)

(memq ’a ’(b c d)) =⇒ #f

(memq (list ’a) ’(b (a) c)) =⇒ #f

(member (list ’a)

’(b (a) c)) =⇒ ((a) c)

(memq 101 ’(100 101 102)) =⇒ unspecified
(memv 101 ’(100 101 102)) =⇒ (101 102)

Implementation responsibilities: The implementation must
check that list is a chain of pairs up to the found element, or
that it is indeed a list if no element is found. It should not
check that it is a chain of pairs beyond the found element.
The implementation must check the restrictions on proc
to the extent performed by applying it as described. An
implementation may check whether proc is an appropriate
argument before applying it.

(assp proc alist) procedure
(assoc obj alist) procedure
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(assv obj alist) procedure
(assq obj alist) procedure

Alist (for “association list”) should be a list of pairs. Proc
should accept one argument and return a single value. Proc
should not mutate alist .

These procedures find the first pair in alist whose car field
satisfies a given condition, and returns that pair without
traversing alist further. If no pair in alist satisfies the
condition, then #f is returned. The assp procedure suc-
cessively applies proc to the car fields of alist and looks
for a pair for which it returns a true value. Proc is always
called in the same dynamic environment as assp itself. The
assoc, assv, and assq procedures look for a pair that has
obj as its car. The assoc procedure uses equal? to com-
pare obj with the car fields of the pairs in alist , while assv

uses eqv? and assq uses eq?.

Implementation responsibilities: The implementation must
check that alist is a chain of pairs containing pairs up to
the found pair, or that it is indeed a list of pairs if no
element is found. It should not check that it is a chain of
pairs beyond the found element. The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
whether proc is an appropriate argument before applying
it.

(define d ’((3 a) (1 b) (4 c)))

(assp even? d) =⇒ (4 c)

(assp odd? d) =⇒ (3 a)

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) =⇒ (a 1)

(assq ’b e) =⇒ (b 2)

(assq ’d e) =⇒ #f

(assq (list ’a) ’(((a)) ((b)) ((c))))

=⇒ #f

(assoc (list ’a) ’(((a)) ((b)) ((c))))

=⇒ ((a))

(assq 5 ’((2 3) (5 7) (11 13)))

=⇒ unspecified
(assv 5 ’((2 3) (5 7) (11 13)))

=⇒ (5 7)

(cons* obj1 . . . objn obj) procedure
(cons* obj) procedure

If called with at least two arguments, cons* returns a
freshly allocated chain of pairs whose cars are obj1, . . . ,
objn, and whose last cdr is obj . If called with only one
argument, cons* returns that argument.

(cons* 1 2 ’(3 4 5)) =⇒ (1 2 3 4 5)

(cons* 1 2 3) =⇒ (1 2 . 3)

(cons* 1) =⇒ 1

4. Sorting

This chapter describes the (rnrs sorting (6)) library
for sorting lists and vectors.

(list-sort proc list) procedure
(vector-sort proc vector) procedure

Proc should accept any two elements of list or vector , and
should not have any side effects. Proc should return a true
value when its first argument is strictly less than its second,
and #f otherwise.

The list-sort and vector-sort procedures perform a
stable sort of list or vector in ascending order according
to proc, without changing list or vector in any way. The
list-sort procedure returns a list, and vector-sort re-
turns a vector. The results may be eq? to the argument
when the argument is already sorted, and the result of
list-sort may share structure with a tail of the origi-
nal list. The sorting algorithm performs O(n lg n) calls to
proc where n is the length of list or vector , and all ar-
guments passed to proc are elements of the list or vector
being sorted, but the pairing of arguments and the sequenc-
ing of calls to proc are not specified. If multiple returns
occur from list-sort or vector-sort, the return values
returned by earlier returns are not mutated.

(list-sort < ’(3 5 2 1)) =⇒ (1 2 3 5)

(vector-sort < ’#(3 5 2 1)) =⇒ #(1 2 3 5)

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
whether proc is an appropriate argument before applying
it.

(vector-sort! proc vector) procedure

Proc should accept any two elements of the vector, and
should not have any side effects. Proc should return a
true value when its first argument is strictly less than its
second, and #f otherwise. The vector-sort! procedure
destructively sorts vector in ascending order according to
proc. The sorting algorithm performs O(n2) calls to proc
where n is the length of vector , and all arguments passed
to proc are elements of the vector being sorted, but the
pairing of arguments and the sequencing of calls to proc
are not specified. The sorting algorithm may be unstable.
The procedure returns unspecified values.

(define v (vector 3 5 2 1))

(vector-sort! < v) =⇒ unspecified
v =⇒ #(1 2 3 5)

Implementation responsibilities: The implementation must
check the restrictions on proc to the extent performed by
applying it as described. An implementation may check
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whether proc is an appropriate argument before applying
it.

5. Control structures

This chapter describes the (rnrs control (6)) library,
which provides useful control structures.

(when 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax
(unless 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax

Syntax: 〈Test〉 must be an expression.

Semantics: A when expression is evaluated by evaluating
the 〈test〉 expression. If 〈test〉 evaluates to a true value, the
remaining 〈expression〉s are evaluated in order, and the re-
sults of the last 〈expression〉 are returned as the results of
the entire when expression. Otherwise, the when expression
returns unspecified values. An unless expression is evalu-
ated by evaluating the 〈test〉 expression. If 〈test〉 evaluates
to #f, the remaining 〈expression〉s are evaluated in order,
and the results of the last 〈expression〉 are returned as the
results of the entire unless expression. Otherwise, the
unless expression returns unspecified values.

The final 〈expression〉 is in tail context if the when or
unless form is itself in tail context.

(when (> 3 2) ’greater) =⇒ greater

(when (< 3 2) ’greater) =⇒ unspecified
(unless (> 3 2) ’less) =⇒ unspecified
(unless (< 3 2) ’less) =⇒ less

The when and unless expressions are derived forms. They
could be defined by the following macros:

(define-syntax when

(syntax-rules ()

((when test result1 result2 ...)

(if test

(begin result1 result2 ...)))))

(define-syntax unless

(syntax-rules ()

((unless test result1 result2 ...)

(if (not test)

(begin result1 result2 ...)))))

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax
. . . )

(〈test〉 〈expression〉 . . . )
〈command〉 . . . )

Syntax: The 〈init〉s, 〈step〉s, 〈test〉s, and 〈command〉s must
be expressions. The 〈variable〉s must be pairwise distinct
variables.

Semantics: The do expression is an iteration construct. It
specifies a set of variables to be bound, how they are to be

initialized at the start, and how they are to be updated on
each iteration.

A do expression is evaluated as follows: The 〈init〉 ex-
pressions are evaluated (in some unspecified order), the
〈variable〉s are bound to fresh locations, the results of
the 〈init〉 expressions are stored in the bindings of the
〈variable〉s, and then the iteration phase begins.

Each iteration begins by evaluating 〈test〉; if the result is
#f, then the 〈command〉s are evaluated in order for effect,
the 〈step〉 expressions are evaluated in some unspecified
order, the 〈variable〉s are bound to fresh locations holding
the results, and the next iteration begins.

If 〈test〉 evaluates to a true value, the 〈expression〉s are
evaluated from left to right and the values of the last
〈expression〉 are returned. If no 〈expression〉s are present,
then the do expression returns unspecified values.

The region of the binding of a 〈variable〉 consists of the
entire do expression except for the 〈init〉s.

A 〈step〉 may be omitted, in which case the effect is the
same as if (〈variable〉 〈init〉 〈variable〉) had been written
instead of (〈variable〉 〈init〉).

If a do expression appears in a tail context, the
〈expression〉s are a 〈tail sequence〉 in the sense of report
section 11.20, i.e., the last 〈expression〉 is also in a tail
context.

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) =⇒ 25

The following definition of do uses a trick to expand the
variable clauses.

(define-syntax do

(syntax-rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec

((loop

(lambda (var ...)

(if test

(begin

#f ; avoid empty begin

expr ...)

(begin

command

...

(loop (do "step" var step ...)

...))))))
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(loop init ...)))

((do "step" x)

x)

((do "step" x y)

y)))

(case-lambda 〈case-lambda clause〉 . . . ) syntax

Syntax: Each 〈case-lambda clause〉 must be of the form

(〈formals〉 〈body〉)

〈Formals〉 must be as in a lambda form (report sec-
tion 11.4.2), and 〈body〉 is as described in report sec-
tion 11.3.

Semantics: A case-lambda expression evaluates to a pro-
cedure. This procedure, when applied, tries to match its
arguments to the 〈case-lambda clause〉s in order. The ar-
guments match a clause if one of the following conditions
is fulfilled:

• 〈Formals〉 has the form (〈variable〉 . . . ) and the num-
ber of arguments is the same as the number of formal
parameters in 〈formals〉.

• 〈Formals〉 has the form
(〈variable1〉 . . . 〈variablen〉 . 〈variablen+1)〉
and the number of arguments is at least n.

• 〈Formals〉 has the form 〈variable〉.

For the first clause matched by the arguments, the variables
of the 〈formals〉 are bound to fresh locations containing the
argument values in the same arrangement as with lambda.

The last expression of a 〈body〉 in a case-lambda

expression is in tail context.

If the arguments match none of the clauses, an exception
with condition type &assertion is raised.

(define foo

(case-lambda

(() ’zero)

((x) (list ’one x))

((x y) (list ’two x y))

((a b c d . e) (list ’four a b c d e))

(rest (list ’rest rest))))

(foo) =⇒ zero

(foo 1) =⇒ (one 1)

(foo 1 2) =⇒ (two 1 2)

(foo 1 2 3) =⇒ (rest (1 2 3))

(foo 1 2 3 4) =⇒ (four 1 2 3 4 ())

The case-lambda keyword can be defined in terms of
lambda by the following macros:

(define-syntax case-lambda

(syntax-rules ()

(( (fmls b1 b2 ...))

(lambda fmls b1 b2 ...))

(( (fmls b1 b2 ...) ...)

(lambda args

(let ((n (length args)))

(case-lambda-help args n

(fmls b1 b2 ...) ...))))))

(define-syntax case-lambda-help

(syntax-rules ()

(( args n)

(assertion-violation #f

"unexpected number of arguments"))

(( args n ((x ...) b1 b2 ...) more ...)

(if (= n (length ’(x ...)))

(apply (lambda (x ...) b1 b2 ...) args)

(case-lambda-help args n more ...)))

(( args n ((x1 x2 ... . r) b1 b2 ...) more ...)

(if (>= n (length ’(x1 x2 ...)))

(apply (lambda (x1 x2 ... . r) b1 b2 ...)

args)

(case-lambda-help args n more ...)))

(( args n (r b1 b2 ...) more ...)

(apply (lambda r b1 b2 ...) args))))

6. Records

This section describes abstractions for creating new data
types representing records.

A record is a compound data structure with a fixed number
of components, called fields. Each record has an associated
type specified by a record-type descriptor, which is an ob-
ject that specifies the fields of the record and various other
properties that all records of that type share. Record ob-
jects are created by a record constructor, a procedure that
creates a fresh record object and initializes its fields to val-
ues. Records of different types can be distinguished from
each other and from other types of objects by record predi-
cates. A record predicate returns #t when passed a record
of the type specified by the record-type descriptor and #f

otherwise. An accessor extracts from a record the com-
ponent associated with a field, and a mutator changes the
component to a different value.

Record types can be extended via single inheritance, allow-
ing record types to model hierarchies that occur in applica-
tions like algebraic data types as well as single-inheritance
class systems. If a record type t extends another record
type p, each record of type t is also a record of type p,
and the predicate, accessors, and mutators applicable to a
record of type p are also applicable to a record of type t .
The extension relationship is transitive in the sense that
a type extends its parent’s parent, if any, and so on. A
record type that does not extend another record type is
called a base record type.
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A record type can be sealed to prevent it from being ex-
tended. Moreover, a record type can be nongenerative, i.e.,
it is globally identified by a “uid”, and new, compatible def-
initions of a nongenerative record type with the same uid
as a previous always yield the same record type.

The record mechanism spans three libraries:

• the (rnrs records syntactic (6)) library, a syn-
tactic layer for defining a record type and associated
constructor, predicate, accessor, and mutators,

• the (rnrs records procedural (6)) library, a pro-
cedural layer for creating and manipulating record
types and creating constructors, predicates, accessors,
and mutators;

• the (rnrs records inspection (6)) library, a set
of inspection procedures.

The inspection procedures allow programs to obtain from
a record instance a descriptor for the type and from there
obtain access to the fields of the record instance. This facil-
ity allows the creation of portable printers and inspectors.
A program may prevent access to a record’s type—and
thereby protect the information stored in the record from
the inspection mechanism—by declaring the type opaque.
Thus, opacity as presented here can be used to enforce ab-
straction barriers.

Any of the standard types mentioned in this report may or
may not be implemented as an opaque record type. Thus,
it may be possible to use inspection on objects of the stan-
dard types.

The procedural layer is particularly useful for writing in-
terpreters that construct host-compatible record types. It
may also serve as a target for expansion of the syntactic lay-
ers. The record operations provided through the procedu-
ral layer may, however, be less efficient than the operations
provided through the syntactic layer, which is designed to
allow expand-time determination of record-instance sizes
and field offsets. Therefore, alternative implementations
of syntactic record-type definition should, when possible,
expand into the syntactic layer rather than the procedural
layer.

The syntactic layer is used more commonly and there-
fore described first. This chapter uses the rtd and
constructor-descriptor parameter names for arguments
that must be record-type descriptors and constructor de-
scriptors, respectively (see section 6.3).

6.1. Mutability and equivalence of records

The fields of a record type are designated mutable or im-
mutable. Correspondingly, a record type with no mutable

field is called immutable, and all records of that type are
immutable objects. All other record types are mutable, and
so are their records.

Each call to a record constructor of a mutable record type
returns a new record with a fresh location (see report sec-
tion 5.10). Consequently, for two records obj1 and obj2,
the return value of (eqv? obj1 obj2), as well as the return
value of (eq? obj1 obj2), adheres to the following criteria
(see report section 11.5):

• If obj1 and obj2 have different record types (i.e., their
record-type descriptors are not eqv?), eqv? returns
#f.

• If obj1 and obj2 are both records of the same mutable
record type, and are the results of two separate calls
to record constructors, then eqv? returns #f.

• If obj1 and obj2 are both the result of a single call to
a record constructor, then eqv? returns #t.

• If obj1 and obj2 are both records of the same record
type, where applying an accessor to both yields results
for which eqv? returns #f, then eqv? returns #f.

6.2. Syntactic layer

The syntactic layer is provided by the (rnrs records

syntactic (6)) library. Some details of the specification
are explained in terms of the specification of the procedural
layer below.

The record-type-defining form define-record-type is a
definition and can appear anywhere any other 〈definition〉
can appear.

(define-record-type 〈name spec〉 〈record clause〉*)
syntax

fields auxiliary syntax
mutable auxiliary syntax
immutable auxiliary syntax
parent auxiliary syntax
protocol auxiliary syntax
sealed auxiliary syntax
opaque auxiliary syntax
nongenerative auxiliary syntax
parent-rtd auxiliary syntax

A define-record-type form defines a record type along
with associated constructor descriptor and constructor,
predicate, field accessors, and field mutators. The
define-record-type form expands into a set of defini-
tions in the environment where define-record-type ap-
pears; hence, it is possible to refer to the bindings (except
for that of the record type itself) recursively.
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The 〈name spec〉 specifies the names of the record type,
constructor, and predicate. It must take one of the follow-
ing forms:

(〈record name〉 〈constructor name〉 〈predicate name〉)
〈record name〉

〈Record name〉, 〈constructor name〉, and 〈predicate name〉
must all be identifiers.

〈Record name〉, taken as a symbol, becomes the
name of the record type. (See the description of
make-record-type-descriptor below.) Additionally, it
is bound by this definition to an expand-time or run-
time representation of the record type and can be used
as parent name in syntactic record-type definitions that
extend this definition. It can also be used as a handle to
gain access to the underlying record-type descriptor and
constructor descriptor (see record-type-descriptor and
record-constructor-descriptor below).

〈Constructor name〉 is defined by this definition to be a
constructor for the defined record type, with a protocol
specified by the protocol clause, or, in its absence, using
a default protocol. For details, see the description of the
protocol clause below.

〈Predicate name〉 is defined by this definition to a predicate
for the defined record type.

The second form of 〈name spec〉 is an abbreviation for the
first form, where the name of the constructor is generated
by prefixing the record name with make-, and the predicate
name is generated by adding a question mark (?) to the
end of the record name. For example, if the record name is
frob, the name of the constructor is make-frob, and the
predicate name is frob?.

Each 〈record clause〉 must take one of the following forms;
it is a syntax violation if multiple 〈record clause〉s of the
same kind appear in a define-record-type form.

(fields 〈field spec〉*)
Each 〈field spec〉 has one of the following forms

(immutable 〈field name〉 〈accessor name〉)
(mutable 〈field name〉

〈accessor name〉 〈mutator name〉)
(immutable 〈field name〉)
(mutable 〈field name〉)
〈field name〉

〈Field name〉, 〈accessor name〉, and 〈mutator name〉 must
all be identifiers. The first form declares an immutable
field called 〈field name〉, with the corresponding accessor
named 〈accessor name〉. The second form declares a mu-
table field called 〈field name〉, with the corresponding ac-
cessor named 〈accessor name〉, and with the corresponding
mutator named 〈mutator name〉.
If 〈field spec〉 takes the third or fourth form, the accessor
name is generated by appending the record name and field

name with a hyphen separator, and the mutator name (for
a mutable field) is generated by adding a -set! suffix to
the accessor name. For example, if the record name is
frob and the field name is widget, the accessor name is
frob-widget and the mutator name is frob-widget-set!.

If 〈field spec〉 is just a 〈field name〉 form, it is an abbrevi-
ation for (immutable 〈field name〉).

The 〈field name〉s become, as symbols, the names of the
fields in the record-type descriptor being created, in the
same order.

The fields clause may be absent; this is equivalent to an
empty fields clause.

(parent 〈parent name〉)

Specifies that the record type is to have parent
type 〈parent name〉, where 〈parent name〉 is the
〈record name〉 of a record type previously defined us-
ing define-record-type. The record-type definition
associated with 〈parent name〉 must not be sealed.

(protocol 〈expression〉)

〈Expression〉 is evaluated in the same environment as the
define-record-type form. It must evaluate to a proce-
dure, and this procedure should be a protocol appropriate
for the record type being defined.

The protocol is used to create a record-constructor descrip-
tor as described below. If no protocol clause is specified, a
constructor descriptor is still created using a default proto-
col. The clause can be absent only if the record type being
defined has no parent type, or if the parent definition does
not specify a protocol.

(sealed #t)

(sealed #f)

If this option is specified with operand #t, the defined
record type is sealed, i.e., no extensions of the record type
can be created. If this option is specified with operand #f,
or is absent, the defined record type is not sealed.

(opaque #t)

(opaque #f)

If this option is specified with operand #t, or if an opaque
parent record type is specified, the defined record type is
opaque. Otherwise, the defined record type is not opaque.
See the specification of record-rtd below for details.

(nongenerative 〈uid〉)
(nongenerative)

This specifies that the record type is nongenerative
with uid 〈uid〉, which must be an 〈identifier〉. If
〈uid〉 is absent, a unique uid is generated at macro-
expansion time. If two record-type definitions spec-
ify the same uid , then the record-type definitions
should be equivalent, i.e., the implied arguments to
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make-record-type-descriptor must be equivalent as de-
scribed under make-record-type-descriptor. See sec-
tion 6.3. If this condition is not met, it is either consid-
ered a syntax violation or an exception with condition type
&assertion is raised. If the condition is met, a single
record type is generated for both definitions.

In the absence of a nongenerative clause, a new record
type is generated every time a define-record-type form
is evaluated:

(let ((f (lambda (x)

(define-record-type r ...)

(if x r? (make-r ...)))))

((f #t) (f #f))) =⇒ #f

(parent-rtd 〈parent rtd〉 〈parent cd〉)

Specifies that the record type is to have its parent type
specified by 〈parent rtd〉, which should be an expres-
sion evaluating to a record-type descriptor or #f, and
〈parent cd〉, which should be an expression evaluating to a
constructor descriptor (see below) or #f.

If 〈parent rtd〉 evaluates to #f, then if 〈parent cd〉 evaluates
to a value, that value must be #f.

If 〈parent rtd〉 evaluates to a record-type descriptor, the
record type must not be sealed. Moreover, a record-type
definition must not have both a parent and a parent-rtd

clause.

Note: The syntactic layer is designed to allow record-instance

sizes and field offsets to be determined at expand time, i.e., by a

macro definition of define-record-type, as long as the parent

(if any) is known. Implementations that take advantage of this

may generate less efficient constructor, accessor, and mutator

code when the parent-rtd clause is used, since the type of the

parent is generally not known until run time. The parent clause

should therefore be used instead when possible.

All bindings created by define-record-type (for the
record type, the constructor, the predicate, the accessors,
and the mutators) must have names that are pairwise dis-
tinct.

If no parent clause is present, no parent-rtd clause is
present, or a parent-rtd clause is present but 〈parent rtd〉
evaluates to #f, the record type is a base type.

The constructor created by a define-record-type form
is a procedure as follows:

• If the record type is a base type and no protocol

clause is present, the constructor accepts as many ar-
guments as there are fields, in the same order as they
appear in the fields clause, and returns a record ob-
ject with the fields initialized to the corresponding ar-
guments.

• If the record type is a base type and a protocol clause
is present, the protocol expression, if it evaluates to a
value, must evaluate to a procedure, and this proce-
dure should accept a single argument. The protocol
procedure is called once during the evaluation of the
define-record-type form with a procedure p as its
argument. It should return a procedure, which will
become the constructor bound to 〈constructor name〉.
The procedure p accepts as many arguments as there
are fields, in the same order as they appear in the
fields clause, and returns a record object with the
fields initialized to the corresponding arguments.

The constructor returned by the protocol procedure
can accept an arbitrary number of arguments, and
should call p once to construct a record object, and
return that record object.

For example, the following protocol expression for a
record-type definition with three fields creates a con-
structor that accepts values for all fields, and initial-
ized them in the reverse order of the arguments:

(lambda (p)

(lambda (v1 v2 v3)

(p v3 v2 v1)))

• If the record type is not a base type and a protocol

clause is present, then the protocol procedure is called
once with a procedure n as its argument. As in the
previous case, the protocol procedure should return a
procedure, which will become the constructor bound
to 〈constructor name〉. However, n is different from p
in the previous case: It accepts arguments correspond-
ing to the arguments of the constructor of the parent
type. It then returns a procedure p that accepts as
many arguments as there are (additional) fields in this
type, in the same order as in the fields clause, and
returns a record object with the fields of the parent
record types initialized according to their constructors
and the arguments to n, and the fields of this record
type initialized to its arguments of p.

The constructor returned by the protocol procedure
can accept an arbitrary number of arguments, and
should call n once to construct the procedure p, and
call p once to create the record object, and finally re-
turn that record object.

For example, the following protocol expression as-
sumes that the constructor of the parent type takes
three arguments:

(lambda (n)

(lambda (v1 v2 v3 x1 x2 x3 x4)

(let ((p (n v1 v2 v3)))

(p x1 x2 x3 x4))))

The resulting constructor accepts seven arguments,
and initializes the fields of the parent types accord-
ing to the constructor of the parent type, with v1, v2,
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and v3 as arguments. It also initializes the fields of
this record type to the values of x1, . . . , x4.

• If there is a parent clause, but no protocol clause,
then the parent type must not have a protocol clause
itself. Similarly, if there is a parent-rtd clause whose
〈parent rtd〉 evaluates to a record-type descriptor, but
no protocol clause, then the 〈parent cd〉 expression,
if it evaluates to a value, must evaluate to #f. The con-
structor bound to 〈constructor name〉 is a procedure
that accepts arguments corresponding to the parent
types’ constructor first, and then one argument for
each field in the same order as in the fields clause.
The constructor returns a record object with the fields
initialized to the corresponding arguments.

A protocol may perform other actions consistent with
the requirements described above, including mutation of
the new record or other side effects, before returning the
record.

Any definition that takes advantage of implicit naming for
the constructor, predicate, accessor, and mutator names
can be rewritten trivially to a definition that specifies all
names explicitly. For example, the implicit-naming record
definition:

(define-record-type frob

(fields (mutable widget))

(protocol

(lambda (p)

(lambda (n) (p (make-widget n))))))

is equivalent to the following explicit-naming record defi-
nition.

(define-record-type (frob make-frob frob?)

(fields (mutable widget

frob-widget

frob-widget-set!))

(protocol

(lambda (p)

(lambda (n) (p (make-widget n))))))

Also, the implicit-naming record definition:

(define-record-type point (fields x y))

is equivalent to the following explicit-naming record defi-
nition:

(define-record-type (point make-point point?)

(fields

(immutable x point-x)

(immutable y point-y)))

With implicit naming, it is still possible to specify some of
the names explicitly; for example, the following overrides
the choice of accessor and mutator names for the widget
field.

(define-record-type frob

(fields (mutable widget getwid setwid!))

(protocol

(lambda (p)

(lambda (n) (p (make-widget n))))))

(record-type-descriptor 〈record name〉) syntax

Evaluates to the record-type descriptor (see below) associ-
ated with the type specified by 〈record name〉.

Note: The record-type-descriptor procedure works on both

opaque and non-opaque record types.

(record-constructor-descriptor 〈record name〉)
syntax

Evaluates to the record-constructor descriptor (see below)
associated with 〈record name〉.

The following example uses the record? procedure from
the (rnrs records inspection (6)) library (section
6.4):

(define-record-type (point make-point point?)

(fields (immutable x point-x)

(mutable y point-y set-point-y!))

(nongenerative

point-4893d957-e00b-11d9-817f-00111175eb9e))

(define-record-type (cpoint make-cpoint cpoint?)

(parent point)

(protocol

(lambda (n)

(lambda (x y c)

((n x y) (color->rgb c)))))

(fields

(mutable rgb cpoint-rgb cpoint-rgb-set!)))

(define (color->rgb c)

(cons ’rgb c))

(define p1 (make-point 1 2))

(define p2 (make-cpoint 3 4 ’red))

(point? p1) =⇒ #t

(point? p2) =⇒ #t

(point? (vector)) =⇒ #f

(point? (cons ’a ’b)) =⇒ #f

(cpoint? p1) =⇒ #f

(cpoint? p2) =⇒ #t

(point-x p1) =⇒ 1

(point-y p1) =⇒ 2

(point-x p2) =⇒ 3

(point-y p2) =⇒ 4

(cpoint-rgb p2) =⇒ (rgb . red)

(set-point-y! p1 17) =⇒ unspecified
(point-y p1) =⇒ 17)
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(record-rtd p1)

=⇒ (record-type-descriptor point)

(define-record-type (ex1 make-ex1 ex1?)

(protocol (lambda (p) (lambda a (p a))))

(fields (immutable f ex1-f)))

(define ex1-i1 (make-ex1 1 2 3))

(ex1-f ex1-i1) =⇒ (1 2 3)

(define-record-type (ex2 make-ex2 ex2?)

(protocol

(lambda (p) (lambda (a . b) (p a b))))

(fields (immutable a ex2-a)

(immutable b ex2-b)))

(define ex2-i1 (make-ex2 1 2 3))

(ex2-a ex2-i1) =⇒ 1

(ex2-b ex2-i1) =⇒ (2 3)

(define-record-type (unit-vector

make-unit-vector

unit-vector?)

(protocol

(lambda (p)

(lambda (x y z)

(let ((length

(sqrt (+ (* x x)

(* y y)

(* z z)))))

(p (/ x length)

(/ y length)

(/ z length))))))

(fields (immutable x unit-vector-x)

(immutable y unit-vector-y)

(immutable z unit-vector-z)))

(define *ex3-instance* #f)

(define-record-type ex3

(parent cpoint)

(protocol

(lambda (n)

(lambda (x y t)

(let ((r ((n x y ’red) t)))

(set! *ex3-instance* r)

r))))

(fields

(mutable thickness))

(sealed #t) (opaque #t))

(define ex3-i1 (make-ex3 1 2 17))

(ex3? ex3-i1) =⇒ #t

(cpoint-rgb ex3-i1) =⇒ (rgb . red)

(ex3-thickness ex3-i1) =⇒ 17

(ex3-thickness-set! ex3-i1 18)

=⇒ unspecified
(ex3-thickness ex3-i1) =⇒ 18

*ex3-instance* =⇒ ex3-i1

(record? ex3-i1) =⇒ #f

6.3. Procedural layer

The procedural layer is provided by the (rnrs records

procedural (6)) library.

(make-record-type-descriptor name procedure
parent uid sealed? opaque? fields)

Returns a record-type descriptor, or rtd, representing a
record type distinct from all built-in types and other record
types.

The name argument must be a symbol. It names the record
type, and is intended purely for informational purposes and
may be used for printing by the underlying Scheme system.

The parent argument must be either #f or an rtd. If it
is an rtd, the returned record type, t , extends the record
type p represented by parent . An exception with condition
type &assertion is raised if parent is sealed (see below).

The uid argument must be either #f or a symbol. If uid
is a symbol, the record-creation operation is nongenerative
i.e., a new record type is created only if no previous call to
make-record-type-descriptor was made with the uid .
If uid is #f, the record-creation operation is generative,
i.e., a new record type is created even if a previous call to
make-record-type-descriptor was made with the same
arguments.

If make-record-type-descriptor is called twice with the
same uid symbol, the parent arguments in the two calls
must be eqv?, the fields arguments equal?, the sealed?
arguments boolean-equivalent (both #f or both true), and
the opaque? arguments boolean-equivalent if the parents
are not opaque. If these conditions are not met, an excep-
tion with condition type &assertion is raised when the
second call occurs. If they are met, the second call returns,
without creating a new record type, the same record-type
descriptor (in the sense of eqv?) as the first call.

Note: Users are encouraged to use symbol names constructed

using the UUID namespace [10] (for example, using the record-

type name as a prefix) for the uid argument.

The sealed? flag must be a boolean. If true, the returned
record type is sealed, i.e., it cannot be extended.

The opaque? flag must be a boolean. If true, the record
type is opaque. If passed an instance of the record type,
record? returns #f. Moreover, if record-rtd (see “Inspec-
tion” below) is called with an instance of the record type,
an exception with condition type &assertion is raised.
The record type is also opaque if an opaque parent is sup-
plied. If opaque? is #f and an opaque parent is not sup-
plied, the record is not opaque.
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The fields argument must be a vector of field specifiers.
Each field specifier must be a list of the form (mutable

name) or a list of the form (immutable name). Each
name must be a symbol and names the corresponding
field of the record type; the names need not be distinct.
A field identified as mutable may be modified, whereas,
when a program attempts to obtain a mutator for a field
identified as immutable, an exception with condition type
&assertion is raised. Where field order is relevant, e.g.,
for record construction and field access, the fields are con-
sidered to be ordered as specified, although no particular
order is required for the actual representation of a record
instance.

The specified fields are added to the parent fields,
if any, to determine the complete set of fields of
the returned record type. If fields is modified after
make-record-type-descriptor has been called, the effect
on the returned rtd is unspecified.

A generative record-type descriptor created by a call to
make-record-type-descriptor is not eqv? to any record-
type descriptor (generative or nongenerative) created by
another call to make-record-type-descriptor. A gen-
erative record-type descriptor is eqv? only to itself, i.e.,
(eqv? rtd1 rtd2) iff (eq? rtd1 rtd2). Also, two nongener-
ative record-type descriptors are eqv? iff they were created
by calls to make-record-type-descriptor with the same
uid arguments.

(record-type-descriptor? obj) procedure

Returns #t if the argument is a record-type descriptor, #f
otherwise.

(make-record-constructor-descriptor rtd procedure
parent-constructor-descriptor protocol)

Returns a record-constructor descriptor (or constructor de-
scriptor for short) that specifies a record constructor (or
constructor for short), that can be used to construct record
values of the type specified by rtd , and which can be ob-
tained via record-constructor. A constructor descriptor
can also be used to create other constructor descriptors for
subtypes of its own record type. Rtd must be a record-type
descriptor. Protocol must be a procedure or #f. If it is #f,
a default protocol procedure is supplied.

If protocol is a procedure, it is handled analogously to the
protocol expression in a define-record-type form.

If rtd is a base record type parent-constructor-descriptor
must be #f. In this case, protocol is called by
record-constructor with a single argument p. P is a pro-
cedure that expects one argument for every field of rtd and
returns a record with the fields of rtd initialized to these ar-
guments. The procedure returned by protocol should call
p once with the number of arguments p expects and re-
turn the resulting record as shown in the simple example
below:

(lambda (p)

(lambda (v1 v2 v3)

(p v1 v2 v3)))

Here, the call to p returns a record whose fields are initial-
ized with the values of v1, v2, and v3. The expression
above is equivalent to (lambda (p) p). Note that the
procedure returned by protocol is otherwise unconstrained;
specifically, it can take any number of arguments.

If rtd is an extension of another record type parent-rtd
and protocol is a procedure, parent-constructor-descriptor
must be a constructor descriptor of parent-rtd or #f.
If parent-constructor-descriptor is a constructor descrip-
tor, protocol is called by record-constructor with a
single argument n, which is a procedure that accepts
the same number of arguments as the constructor of
parent-constructor-descriptor and returns a procedure p
that, when called, constructs the record itself. The p
procedure expects one argument for every field of rtd
(not including parent fields) and returns a record with
the fields of rtd initialized to these arguments, and the
fields of parent-rtd and its parents initialized as specified
by parent-constructor-descriptor .

The procedure returned by protocol should call n once with
the number of arguments n expects, call the procedure p it
returns once with the number of arguments p expects and
return the resulting record. A simple protocol in this case
might be written as follows:

(lambda (n)

(lambda (v1 v2 v3 x1 x2 x3 x4)

(let ((p (n v1 v2 v3)))

(p x1 x2 x3 x4))))

This passes arguments v1, v2, v3 to n for
parent-constructor-descriptor and calls p with x1,
. . . , x4 to initialize the fields of rtd itself.

Thus, the constructor descriptors for a record type form
a sequence of protocols parallel to the sequence of record-
type parents. Each constructor descriptor in the chain de-
termines the field values for the associated record type.
Child record constructors need not know the number or
contents of parent fields, only the number of arguments
accepted by the parent constructor.

Protocol may be #f, specifying a default constructor that
accepts one argument for each field of rtd (including the
fields of its parent type, if any). Specifically, if rtd is a base
type, the default protocol procedure behaves as if it were
(lambda (p) p). If rtd is an extension of another type,
then parent-constructor-descriptor must be either #f or it-
self specify a default constructor, and the default protocol
procedure behaves as if it were:

(lambda (n)

(lambda (v1 ... vj x1 ... xk)
(let ((p (n v1 ... vj)))

(p x1 ... xk))))
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The resulting constructor accepts one argument for each
of the record type’s complete set of fields (including those
of the parent record type, the parent’s parent record type,
etc.) and returns a record with the fields initialized to those
arguments, with the field values for the parent coming be-
fore those of the extension in the argument list. (In the
example, j is the complete number of fields of the parent
type, and k is the number of fields of rtd itself.)

If rtd is an extension of another record
type and parent-constructor-descriptor is #f,
parent-constructor-descriptor is treated as if it were
a constructor descriptor for the parent rtd of rtd with a
default protocol.

Implementation responsibilities: If protocol is a procedure,
the implementation must check the restrictions on it to the
extent performed by applying it as described when the con-
structor is called. An implementation may check whether
protocol is an appropriate argument before applying it.

(define rtd1

(make-record-type-descriptor

’rtd1 #f #f #f #f

’#((immutable x1) (immutable x2))))

(define rtd2

(make-record-type-descriptor

’rtd2 rtd1 #f #f #f

’#((immutable x3) (immutable x4))))

(define rtd3

(make-record-type-descriptor

’rtd3 rtd2 #f #f #f

’#((immutable x5) (immutable x6))))

(define protocol1

(lambda (p)

(lambda (a b c)

(p (+ a b) (+ b c)))))

(define protocol2

(lambda (n)

(lambda (a b c d e f)

(let ((p (n a b c)))

(p (+ d e) (+ e f))))))

(define protocol3

(lambda (n)

(lambda (a b c d e f g h i)

(let ((p (n a b c d e f)))

(p (+ g h) (+ h i))))))

(define cd1

(make-record-constructor-descriptor

rtd1 #f protocol1))

(define cd2

(make-record-constructor-descriptor

rtd2 cd1 protocol2))

(define cd3

(make-record-constructor-descriptor

rtd3 cd2 protocol3))

(define make-rtd1 (record-constructor cd1))

(define make-rtd2 (record-constructor cd2))

(define make-rtd3 (record-constructor cd3))

(make-rtd3 1 2 3 4 5 6 7 8 9)

=⇒
〈record with fields initialized to 3, 5, 9, 11, 15, 17〉

(record-constructor constructor-descriptor) procedure

Calls the protocol of constructor-descriptor (as described
for make-record-constructor-descriptor) and returns
the resulting constructor constructor for records of the
record type associated with constructor-descriptor .

(record-predicate rtd) procedure

Returns a procedure that, given an object obj , returns #t

if obj is a record of the type represented by rtd , and #f

otherwise.

(record-accessor rtd k) procedure

K must be a valid field index of rtd . The record-accessor
procedure returns a one-argument procedure whose argu-
ment must be a record of the type represented by rtd . This
procedure returns the value of the selected field of that
record.

The field selected corresponds to the kth element (0-
based) of the fields argument to the invocation of
make-record-type-descriptor that created rtd . Note
that k cannot be used to specify a field of any type rtd
extends.

(record-mutator rtd k) procedure

K must be a valid field index of rtd . The record-mutator

procedure returns a two-argument procedure whose argu-
ments must be a record record r of the type represented
by rtd and an object obj . This procedure stores obj within
the field of r specified by k . The k argument is as in
record-accessor. If k specifies an immutable field, an
exception with condition type &assertion is raised. The
mutator returns unspecified values.

(define :point

(make-record-type-descriptor

’point #f

#f #f #f
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’#((mutable x) (mutable y))))

(define :point-cd

(make-record-constructor-descriptor :point #f #f))

(define make-point (record-constructor :point-cd))

(define point? (record-predicate :point))

(define point-x (record-accessor :point 0))

(define point-y (record-accessor :point 1))

(define point-x-set! (record-mutator :point 0))

(define point-y-set! (record-mutator :point 1))

(define p1 (make-point 1 2))

(point? p1) =⇒ #t

(point-x p1) =⇒ 1

(point-y p1) =⇒ 2

(point-x-set! p1 5) =⇒ unspecified
(point-x p1) =⇒ 5

(define :point2

(make-record-type-descriptor

’point2 :point

#f #f #f ’#((mutable x) (mutable y))))

(define make-point2

(record-constructor

(make-record-constructor-descriptor :point2

#f #f)))

(define point2? (record-predicate :point2))

(define point2-xx (record-accessor :point2 0))

(define point2-yy (record-accessor :point2 1))

(define p2 (make-point2 1 2 3 4))

(point? p2) =⇒ #t

(point-x p2) =⇒ 1

(point-y p2) =⇒ 2

(point2-xx p2) =⇒ 3

(point2-yy p2) =⇒ 4

(define :point-cd/abs

(make-record-constructor-descriptor

:point #f

(lambda (new)

(lambda (x y)

(new (abs x) (abs y))))))

(define make-point/abs

(record-constructor :point-cd/abs))

(point-x (make-point/abs -1 -2))

=⇒ 1

(point-y (make-point/abs -1 -2))

=⇒ 2

(define :cpoint

(make-record-type-descriptor

’cpoint :point

#f #f #f

’#((mutable rgb))))

(define make-cpoint

(record-constructor

(make-record-constructor-descriptor

:cpoint :point-cd

(lambda (p)

(lambda (x y c)

((p x y) (color->rgb c)))))))

(define make-cpoint/abs

(record-constructor

(make-record-constructor-descriptor

:cpoint :point-cd/abs

(lambda (p)

(lambda (x y c)

((p x y) (color->rgb c)))))))

(define cpoint-rgb

(record-accessor :cpoint 0))

(define (color->rgb c)

(cons ’rgb c))

(cpoint-rgb (make-cpoint -1 -3 ’red))

=⇒ (rgb . red)

(point-x (make-cpoint -1 -3 ’red))

=⇒ -1

(point-x (make-cpoint/abs -1 -3 ’red))

=⇒ 1

6.4. Inspection

The (rnrs records inspection (6)) library provides
procedures for inspecting records and their record-type de-
scriptors. These procedures are designed to allow the writ-
ing of portable printers and inspectors.

On the one hand, record? and record-rtd treat
records of opaque record types as if they were not
records. On the other hand, the inspection proce-
dures that operate on record-type descriptors them-
selves are not affected by opacity. In other words,
opacity controls whether a program can obtain an
rtd from a record. If the program has access to
the original rtd via make-record-type-descriptor or
record-type-descriptor, it can still make use of the in-
spection procedures.

(record? obj) procedure

Returns #t if obj is a record, and its record type is not
opaque, and returns #f otherwise.

(record-rtd record) procedure

Returns the rtd representing the type of record if the type
is not opaque. The rtd of the most precise type is returned;
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that is, the type t such that record is of type t but not of
any type that extends t . If the type is opaque, an exception
is raised with condition type &assertion.

(record-type-name rtd) procedure

Returns the name of the record-type descriptor rtd .

(record-type-parent rtd) procedure

Returns the parent of the record-type descriptor rtd , or #f
if it has none.

(record-type-uid rtd) procedure

Returns the uid of the record-type descriptor rtd, or #f if
it has none. (An implementation may assign a generated
uid to a record type even if the type is generative, so the
return of a uid does not necessarily imply that the type is
nongenerative.)

(record-type-generative? rtd) procedure

Returns #t if rtd is generative, and #f if not.

(record-type-sealed? rtd) procedure

Returns #t if the record-type descriptor is sealed, and #f

if not.

(record-type-opaque? rtd) procedure

Returns #t if the the record-type descriptor is opaque, and
#f if not.

(record-type-field-names rtd) procedure

Returns a vector of symbols naming the fields of the
type represented by rtd (not including the fields of par-
ent types) where the fields are ordered as described un-
der make-record-type-descriptor. The returned vector
may be immutable. If the returned vector is modified, the
effect on rtd is unspecified.

(record-field-mutable? rtd k) procedure

Returns #t if the field specified by k of the type rep-
resented by rtd is mutable, and #f if not. K is as in
record-accessor.

7. Exceptions and conditions

Scheme allows programs to deal with exceptional situations
using two cooperating facilities: the exception system for
raising and handling exceptional situations, and the condi-
tion system for describing these situations.

The exception system allows the program, when it detects
an exceptional situation, to pass control to an exception
handler, and to dynamically establish such exception han-
dlers. Exception handlers are always invoked with an ob-
ject describing the exceptional situation. Scheme’s con-
dition system provides a standardized taxonomy of such
descriptive objects, as well as a facility for extending the
taxonomy.

7.1. Exceptions

This section describes Scheme’s exception-handling and
exception-raising constructs provided by the (rnrs

exceptions (6)) library.

Exception handlers are one-argument procedures that de-
termine the action the program takes when an exceptional
situation is signalled. The system implicitly maintains a
current exception handler.

The program raises an exception by invoking the current
exception handler, passing it an object encapsulating in-
formation about the exception. Any procedure accepting
one argument may serve as an exception handler and any
object may be used to represent an exception.

The system maintains the current exception handler as
part of the dynamic environment of the program; see report
section 5.12.

When a program begins its execution, the current excep-
tion handler is expected to handle all &serious conditions
by interrupting execution, reporting that an exception has
been raised, and displaying information about the condi-
tion object that was provided. The handler may then exit,
or may provide a choice of other options. Moreover, the
exception handler is expected to return when passed any
other non-&serious condition. Interpretation of these ex-
pectations necessarily depends upon the nature of the sys-
tem in which programs are executed, but the intent is that
users perceive the raising of an exception as a controlled
escape from the situation that raised the exception, not as
a crash.

(with-exception-handler handler thunk) procedure

Handler must be a procedure and should accept one ar-
gument. Thunk must be a procedure and should accept
zero arguments. The with-exception-handler procedure
returns the results of invoking thunk without arguments.
Handler is installed as the current exception handler for
the dynamic extent (as determined by dynamic-wind) of
the invocation of thunk .

Implementation responsibilities: The implementation must
check the restrictions on thunk to the extent performed by
applying it as described above. The implementation must
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check the restrictions on handler to the extent performed
by applying it as described when it is called as a result of a
call to raise or raise-continuable. An implementation
may check whether handler is an appropriate argument
before applying it.

(guard (〈variable〉 syntax
〈cond clause1〉 〈cond clause2〉 . . . )

〈body〉)
=> auxiliary syntax
else auxiliary syntax

Syntax: Each 〈cond clause〉 is as in the specification of
cond. (See report section 11.4.5.) => and else are the
same as in the (rnrs base (6)) library.

Semantics: Evaluating a guard form evaluates 〈body〉
with an exception handler that binds the raised object to
〈variable〉 and within the scope of that binding evaluates
the clauses as if they were the clauses of a cond expression.
That implicit cond expression is evaluated with the contin-
uation and dynamic environment of the guard expression.
If every 〈cond clause〉’s 〈test〉 evaluates to #f and there is
no else clause, then raise-continuable is invoked on the
raised object within the dynamic environment of the origi-
nal call to raise except that the current exception handler
is that of the guard expression.

The final expression in a 〈cond clause〉 is in a tail context
if the guard expression itself is.

(raise obj) procedure

Raises a non-continuable exception by invoking the current
exception handler on obj . The handler is called with a
continuation whose dynamic environment is that of the call
to raise, except that the current exception handler is the
one that was in place when the handler being called was
installed. When the handler returns, a non-continuable
exception with condition type &non-continuable is raised
in the same dynamic environment as the handler.

(raise-continuable obj) procedure

Raises a continuable exception by invoking the current ex-
ception handler on obj . The handler is called with a con-
tinuation that is equivalent to the continuation of the call
to raise-continuable, with these two exceptions: (1) the
current exception handler is the one that was in place when
the handler being called was installed, and (2) if the han-
dler being called returns, then it will again become the
current exception handler. If the handler returns, the val-
ues it returns become the values returned by the call to
raise-continuable.

(guard (con

((error? con)

(if (message-condition? con)

(display (condition-message con))

(display "an error has occurred"))

’error)

((violation? con)

(if (message-condition? con)

(display (condition-message con))

(display "the program has a bug"))

’violation))

(raise

(condition

(make-error)

(make-message-condition "I am an error"))))

prints: I am an error

=⇒ error

(guard (con

((error? con)

(if (message-condition? con)

(display (condition-message con))

(display "an error has occurred"))

’error))

(raise

(condition

(make-violation)

(make-message-condition "I am an error"))))

=⇒ &violation exception

(guard (con

((error? con)

(display "error opening file")

#f))

(call-with-input-file "foo.scm" read))

prints: error opening file

=⇒ #f

(with-exception-handler

(lambda (con)

(cond

((not (warning? con))

(raise con))

((message-condition? con)

(display (condition-message con)))

(else

(display "a warning has been issued")))

42)

(lambda ()

(+ (raise-continuable

(condition

(make-warning)

(make-message-condition

"should be a number")))

23)))

prints: should be a number

=⇒ 65
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7.2. Conditions

The section describes Scheme’s (rnrs conditions (6))

library for creating and inspecting condition types and val-
ues. A condition value encapsulates information about an
exceptional situation. Scheme also defines a number of ba-
sic condition types.

Scheme conditions provides two mechanisms to enable
communication about an exceptional situation: subtyping
among condition types allows handling code to determine
the general nature of an exception even though it does not
anticipate its exact nature, and compound conditions allow
an exceptional situation to be described in multiple ways.

7.2.1. Condition objects

Conceptually, there are two different kinds of condition ob-
jects: simple conditions and compound conditions. An ob-
ject that is either a simple condition or a compound con-
dition is simply a condition. Compound conditions form a
type disjoint from the base types described in report sec-
tion 11.1. A simple condition describes a single aspect
of an exceptional situation. A compound condition rep-
resents multiple aspects of an exceptional situation as a
list of simple conditions, its components. Most of the op-
erations described in this section treat a simple condition
identically to a compound condition with itself as its own
sole component. For a subtype t of &condition, a condi-
tion of type t is either a record of type t or a compound
condition containing a component of type t .

&condition condition type

Simple conditions are records of subtypes of the
&condition record type. The &condition type has no
fields and is neither sealed nor opaque.

(condition condition1 . . . ) procedure

The condition procedure returns a condition object with
the components of the conditions as its components, in
the same order, i.e., with the components of condition1

appearing first in the same order as in condition1, then with
the components of condition2, and so on. The returned
condition is compound if the total number of components
is zero or greater than one. Otherwise, it may be compound
or simple.

(simple-conditions condition) procedure

The simple-conditions procedure returns a list of the
components of condition, in the same order as they ap-
peared in the construction of condition. The returned list
is immutable. If the returned list is modified, the effect on
condition is unspecified.

Note: Because condition decomposes its arguments into sim-

ple conditions, simple-conditions always returns a “flattened”

list of simple conditions.

(condition? obj) procedure

Returns #t if obj is a (simple or compound) condition,
otherwise returns #f.

(condition-predicate rtd) procedure

Rtd must be a record-type descriptor of a subtype of
&condition. The condition-predicate procedure re-
turns a procedure that takes one argument. This proce-
dure returns #t if its argument is a condition of the con-
dition type represented by rtd , i.e., if it is either a simple
condition of that record type (or one of its subtypes) or a
compound conditition with such a simple condition as one
of its components, and #f otherwise.

(condition-accessor rtd proc) procedure

Rtd must be a record-type descriptor of a subtype of
&condition. Proc should accept one argument, a record
of the record type of rtd . The condition-accessor pro-
cedure returns a procedure that accepts a single argument,
which must be a condition of the type represented by rtd .
This procedure extracts the first component of the condi-
tion of the type represented by rtd , and returns the result
of applying proc to that component.

(define-record-type (&cond1 make-cond1 real-cond1?)

(parent &condition)

(fields

(immutable x real-cond1-x)))

(define cond1?

(condition-predicate

(record-type-descriptor &cond1)))

(define cond1-x

(condition-accessor

(record-type-descriptor &cond1)

real-cond1-x))

(define foo (make-cond1 ’foo))

(condition? foo) =⇒ #t

(cond1? foo) =⇒ #t

(cond1-x foo) =⇒ foo

(define-record-type (&cond2 make-cond2 real-cond2?)

(parent &condition)

(fields

(immutable y real-cond2-y)))

(define cond2?

(condition-predicate

(record-type-descriptor &cond2)))
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(define cond2-y

(condition-accessor

(record-type-descriptor &cond2)

real-cond2-y))

(define bar (make-cond2 ’bar))

(condition? (condition foo bar))

=⇒ #t

(cond1? (condition foo bar))

=⇒ #t

(cond2? (condition foo bar))

=⇒ #t

(cond1? (condition foo)) =⇒ #t

(real-cond1? (condition foo))

=⇒ unspecified
(real-cond1? (condition foo bar))

=⇒ #f

(cond1-x (condition foo bar))

=⇒ foo

(cond2-y (condition foo bar))

=⇒ bar

(equal? (simple-conditions (condition foo bar))

(list foo bar)) =⇒ #t

(equal? (simple-conditions

(condition foo (condition bar)))

(list foo bar)) =⇒ #t

(define-condition-type 〈condition-type〉 syntax
〈supertype〉

〈constructor〉 〈predicate〉
〈field-spec1〉 . . . )

Syntax: 〈Condition-type〉, 〈supertype〉, 〈constructor〉, and
〈predicate〉 must all be identifiers. Each 〈field-spec〉 must
be of the form

(〈field〉 〈accessor〉)

where both 〈field〉 and 〈accessor〉 must be identifiers.

Semantics: The define-condition-type form ex-
pands into a record-type definition for a record type
〈condition-type〉 (see section 6.2). The record type will be
non-opaque, non-sealed, and its fields will be immutable.
It will have 〈supertype〉 has its parent type. The remaining
identifiers will be bound as follows:

• 〈Constructor〉 is bound to a default constructor for
the type (see section 6.3): It accepts one argument for
each of the record type’s complete set of fields (includ-
ing parent types, with the fields of the parent coming
before those of the extension in the arguments) and
returns a condition object initialized to those argu-
ments.

• 〈Predicate〉 is bound to a predicate that identifies con-
ditions of type 〈condition-type〉 or any of its subtypes.

• Each 〈accessor〉 is bound to a procedure that ex-
tracts the corresponding field from a condition of type
〈condition-type〉.

(define-condition-type &c &condition

make-c c?

(x c-x))

(define-condition-type &c1 &c

make-c1 c1?

(a c1-a))

(define-condition-type &c2 &c

make-c2 c2?

(b c2-b))

(define v1 (make-c1 "V1" "a1"))

(c? v1) =⇒ #t

(c1? v1) =⇒ #t

(c2? v1) =⇒ #f

(c-x v1) =⇒ "V1"

(c1-a v1) =⇒ "a1"

(define v2 (make-c2 "V2" "b2"))

(c? v2) =⇒ #t

(c1? v2) =⇒ #f

(c2? v2) =⇒ #t

(c-x v2) =⇒ "V2"

(c2-b v2) =⇒ "b2"

(define v3 (condition

(make-c1 "V3/1" "a3")

(make-c2 "V3/2" "b3")))

(c? v3) =⇒ #t

(c1? v3) =⇒ #t

(c2? v3) =⇒ #t

(c-x v3) =⇒ "V3/1"

(c1-a v3) =⇒ "a3"

(c2-b v3) =⇒ "b3"

(define v4 (condition v1 v2))

(c? v4) =⇒ #t

(c1? v4) =⇒ #t

(c2? v4) =⇒ #t

(c-x v4) =⇒ "V1"

(c1-a v4) =⇒ "a1"

(c2-b v4) =⇒ "b2"

(define v5 (condition v2 v3))

(c? v5) =⇒ #t

(c1? v5) =⇒ #t

(c2? v5) =⇒ #t

(c-x v5) =⇒ "V2"

(c1-a v5) =⇒ "a3"

(c2-b v5) =⇒ "b2"
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&assertion &non-continuable &implementation-restriction &lexical &syntax &undefined

Figure 7.1: Hierarchy of standard condition types

7.3. Standard condition types

&message condition type
(make-message-condition message) procedure
(message-condition? obj) procedure
(condition-message condition) procedure

This condition type could be defined by

(define-condition-type &message &condition

make-message-condition message-condition?

(message condition-message))

It carries a message further describing the nature of the
condition to humans.

&warning condition type
(make-warning) procedure
(warning? obj) procedure

This condition type could be defined by

(define-condition-type &warning &condition

make-warning warning?)

This type describes conditions that do not, in principle,
prohibit immediate continued execution of the program,
but may interfere with the program’s execution later.

&serious condition type
(make-serious-condition) procedure
(serious-condition? obj) procedure

This condition type could be defined by

(define-condition-type &serious &condition

make-serious-condition serious-condition?)

This type describes conditions serious enough that they
cannot safely be ignored. This condition type is primarily
intended as a supertype of other condition types.

&error condition type
(make-error) procedure
(error? obj) procedure

This condition type could be defined by

(define-condition-type &error &serious

make-error error?)

This type describes errors, typically caused by something
that has gone wrong in the interaction of the program with
the external world or the user.

&violation condition type
(make-violation) procedure
(violation? obj) procedure

This condition type could be defined by

(define-condition-type &violation &serious

make-violation violation?)

This type describes violations of the language standard or a
library standard, typically caused by a programming error.

&assertion condition type
(make-assertion-violation) procedure
(assertion-violation? obj) procedure

This condition type could be defined by

(define-condition-type &assertion &violation

make-assertion-violation assertion-violation?)

This type describes an invalid call to a procedure, either
passing an invalid number of arguments, or passing an ar-
gument of the wrong type.

&irritants condition type
(make-irritants-condition irritants) procedure
(irritants-condition? obj) procedure
(condition-irritants condition) procedure

This condition type could be defined by

(define-condition-type &irritants &condition

make-irritants-condition irritants-condition?

(irritants condition-irritants))
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Irritants should be a list of objects. This condition pro-
vides additional information about a condition, typically
the argument list of a procedure that detected an excep-
tion. Conditions of this type are created by the error and
assertion-violation procedures of report section 11.14.

&who condition type
(make-who-condition who) procedure
(who-condition? obj) procedure
(condition-who condition) procedure

This condition type could be defined by

(define-condition-type &who &condition

make-who-condition who-condition?

(who condition-who))

Who should be a symbol or string identifying the entity re-
porting the exception. Conditions of this type are created
by the error and assertion-violation procedures (re-
port section 11.14), and the syntax-violation procedure
(section 12.9).

&non-continuable condition type
(make-non-continuable-violation) procedure
(non-continuable-violation? obj) procedure

This condition type could be defined by

(define-condition-type &non-continuable &violation

make-non-continuable-violation

non-continuable-violation?)

This type indicates that an exception handler invoked via
raise has returned.

&implementation-restriction condition type
(make-implementation-restriction-violation)

procedure
(implementation-restriction-violation? obj)

procedure

This condition type could be defined by

(define-condition-type &implementation-restriction

&violation

make-implementation-restriction-violation

implementation-restriction-violation?)

This type describes a violation of an implementation re-
striction allowed by the specification, such as the absence of
representations for NaNs and infinities. (See section 11.3.)

&lexical condition type
(make-lexical-violation) procedure
(lexical-violation? obj) procedure

This condition type could be defined by

(define-condition-type &lexical &violation

make-lexical-violation lexical-violation?)

This type describes syntax violations at the level of the
datum syntax.

&syntax condition type
(make-syntax-violation form subform) procedure
(syntax-violation? obj) procedure
(syntax-violation-form condition) procedure
(syntax-violation-subform condition) procedure

This condition type could be defined by

(define-condition-type &syntax &violation

make-syntax-violation syntax-violation?

(form syntax-violation-form)

(subform syntax-violation-subform))

This type describes syntax violations. Form should be the
erroneous syntax object or a datum representing the code
of the erroneous form. Subform should be an optional syn-
tax object or datum within the erroneous form that more
precisely locates the violation. It can be #f to indicate the
absence of more precise information.

&undefined condition type
(make-undefined-violation) procedure
(undefined-violation? obj) procedure

This condition type could be defined by

(define-condition-type &undefined &violation

make-undefined-violation undefined-violation?)

This type describes unbound identifiers in the program.

8. I/O

This chapter describes Scheme’s libraries for performing
input and output:

• The (rnrs io ports (6)) library (section 8.2) is an
I/O layer for conventional, imperative buffered input
and output with text and binary data.

• The (rnrs io simple (6)) library (section 8.3) is a
convenience library atop the (rnrs io ports (6)) li-
brary for textual I/O, compatible with the traditional
Scheme I/O procedures [8].

Section 8.1 defines a condition-type hierarchy that is ex-
ported by both the (rnrs io ports (6)) and (rnrs io

simple (6)) libraries.
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8.1. Condition types

The procedures described in this chapter, when they detect
an exceptional situation that arises from an “I/O errors”,
raise an exception with condition type &i/o.

The condition types and corresponding predicates and ac-
cessors are exported by both the (rnrs io ports (6))

and (rnrs io simple (6)) libraries. They are also ex-
ported by the (rnrs files (6)) library described in
chapter 9.

&i/o condition type
(make-i/o-error) procedure
(i/o-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o &error

make-i/o-error i/o-error?)

This is a supertype for a set of more specific I/O errors.

&i/o-read condition type
(make-i/o-read-error) procedure
(i/o-read-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-read &i/o

make-i/o-read-error i/o-read-error?)

This condition type describes read errors that occurred
during an I/O operation.

&i/o-write condition type
(make-i/o-write-error) procedure
(i/o-write-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-write &i/o

make-i/o-write-error i/o-write-error?)

This condition type describes write errors that occurred
during an I/O operation.

&i/o-invalid-position condition type
(make-i/o-invalid-position-error position)

procedure
(i/o-invalid-position-error? obj) procedure
(i/o-error-position condition) procedure

This condition type could be defined by

(define-condition-type &i/o-invalid-position &i/o

make-i/o-invalid-position-error

i/o-invalid-position-error?

(position i/o-error-position))

This condition type describes attempts to set the file po-
sition to an invalid position. Position should be the file
position that the program intended to set. This condition
describes a range error, but not an assertion violation.

&i/o-filename condition type
(make-i/o-filename-error filename) procedure
(i/o-filename-error? obj) procedure
(i/o-error-filename condition) procedure

This condition type could be defined by

(define-condition-type &i/o-filename &i/o

make-i/o-filename-error i/o-filename-error?

(filename i/o-error-filename))

This condition type describes an I/O error that occurred
during an operation on a named file. Filename should be
the name of the file.

&i/o-file-protection condition type
(make-i/o-file-protection-error filename)

procedure
(i/o-file-protection-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-protection

&i/o-filename

make-i/o-file-protection-error

i/o-file-protection-error?)

A condition of this type specifies that an operation tried
to operate on a named file with insufficient access rights.

&i/o-file-is-read-only condition type
(make-i/o-file-is-read-only-error filename)

procedure
(i/o-file-is-read-only-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-is-read-only

&i/o-file-protection

make-i/o-file-is-read-only-error

i/o-file-is-read-only-error?)

A condition of this type specifies that an operation tried
to operate on a named read-only file under the assumption
that it is writeable.

&i/o-file-already-exists condition type
(make-i/o-file-already-exists-error filename)

procedure
(i/o-file-already-exists-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-already-exists

&i/o-filename

make-i/o-file-already-exists-error

i/o-file-already-exists-error?)
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A condition of this type specifies that an operation tried
to operate on an existing named file under the assumption
that it did not exist.

&i/o-file-does-not-exist condition type
(make-i/o-file-does-not-exist-error filename)

procedure
(i/o-file-does-not-exist-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-file-does-not-exist

&i/o-filename

make-i/o-file-does-not-exist-error

i/o-file-does-not-exist-error?)

A condition of this type specifies that an operation tried to
operate on an non-existent named file under the assump-
tion that it existed.

&i/o-port condition type
(make-i/o-port-error pobj) procedure
(i/o-port-error? obj) procedure
(i/o-error-port condition) procedure

This condition type could be defined by

(define-condition-type &i/o-port &i/o

make-i/o-port-error i/o-port-error?

(pobj i/o-error-port))

This condition type specifies the port with which an I/O
error is associated. Pobj should be the port. Condi-
tions raised by procedures accepting a port as an argument
should include an &i/o-port-error condition.

8.2. Port I/O

The (rnrs io ports (6)) library defines an I/O layer for
conventional, imperative buffered input and output. A port
represents a buffered access object for a data sink or source
or both simultaneously. The library allows ports to be
created from arbitrary data sources and sinks.

The (rnrs io ports (6)) library distinguishes between
input ports and output ports. An input port is a source
for data, whereas an output port is a sink for data. A port
may be both an input port and an output port; such a port
typically provides simultaneous read and write access to a
file or other data.

The (rnrs io ports (6)) library also distinguishes be-
tween binary ports, which are sources or sinks for uninter-
preted bytes, and textual ports, which are sources or sinks
for characters and strings.

This section uses input-port , output-port , binary-port ,
textual-port , binary-input-port , textual-input-port ,
binary-output-port , textual-output-port , and port as

parameter names for arguments that must be input
ports (or combined input/output ports), output ports
(or combined input/output ports), binary ports, textual
ports, binary input ports, textual input ports, binary
output ports, textual output ports, or any kind of port,
respectively.

8.2.1. File names

Some of the procedures described in this chapter accept a
file name as an argument. Valid values for such a file name
include strings that name a file using the native notation of
filesystem paths on an implementation’s underlying oper-
ating system, and may include implementation-dependent
values as well.

A filename parameter name means that the corresponding
argument must be a file name.

8.2.2. File options

When opening a file, the various procedures in this library
accept a file-options object that encapsulates flags to
specify how the file is to be opened. A file-options

object is an enum-set (see chapter 14) over the symbols
constituting valid file options. A file-options parameter
name means that the corresponding argument must be a
file-options object.

(file-options 〈file-options symbol〉 . . . ) syntax

Each 〈file-options symbol〉 must be a symbol. The
file-options syntax returns a file-options object that en-
capsulates the specified options.

When supplied to an operation that opens a file for output,
the file-options object returned by (file-options) spec-
ifies that the file is created if it does not exist and an ex-
ception with condition type &i/o-file-already-exists

is raised if it does exist. The following standard options
can be included to modify the default behavior.

• no-create If the file does not already exist, it is
not created; instead, an exception with condition
type &i/o-file-does-not-exist is raised. If the
file already exists, the exception with condition type
&i/o-file-already-exists is not raised and the file
is truncated to zero length.

• no-fail If the file already exists, the exception with
condition type &i/o-file-already-exists is not
raised, even if no-create is not included, and the file
is truncated to zero length.

• no-truncate If the file already exists and the excep-
tion with condition type &i/o-file-already-exists
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has been inhibited by inclusion of no-create or
no-fail, the file is not truncated, but the port’s cur-
rent position is still set to the beginning of the file.

These options have no effect when a file is opened only
for input. Symbols other than those listed above may be
used as 〈file-options symbol〉s; they have implementation-
specific meaning, if any.

Note: Only the name of 〈file-options symbol〉 is significant.

8.2.3. Buffer modes

Each port has an associated buffer mode. For an output
port, the buffer mode defines when an output operation
flushes the buffer associated with the output port. For an
input port, the buffer mode defines how much data will
be read to satisfy read operations. The possible buffer
modes are the symbols none for no buffering, line for flush-
ing upon line endings and reading up to line endings, or
other implementation-dependent behavior, and block for
arbitrary buffering. This section uses the parameter name
buffer-mode for arguments that must be buffer-mode sym-
bols.

If two ports are connected to the same mutable source,
both ports are unbuffered, and reading a byte or character
from that shared source via one of the two ports would
change the bytes or characters seen via the other port, a
lookahead operation on one port will render the peeked
byte or character inaccessible via the other port, while a
subsequent read operation on the peeked port will see the
peeked byte or character even though the port is otherwise
unbuffered.

In other words, the semantics of buffering is defined in
terms of side effects on shared mutable sources, and a
lookahead operation has the same side effect on the shared
source as a read operation.

(buffer-mode 〈buffer-mode symbol〉) syntax

〈Buffer-mode symbol〉must be a symbol whose name is one
of none, line, and block. The result is the corresponding
symbol, and specifies the associated buffer mode.

Note: Only the name of 〈buffer-mode symbol〉 is significant.

(buffer-mode? obj) procedure

Returns #t if the argument is a valid buffer-mode symbol,
and returns #f otherwise.

8.2.4. Transcoders

Several different Unicode encoding schemes describe stan-
dard ways to encode characters and strings as byte se-
quences and to decode those sequences [12]. Within this
document, a codec is an immutable Scheme object that
represents a Unicode or similar encoding scheme.

An end-of-line style is a symbol that, if it is not none,
describes how a textual port transcodes representations of
line endings.

A transcoder is an immutable Scheme object that combines
a codec with an end-of-line style and a method for handling
decoding errors. Each transcoder represents some specific
bidirectional (but not necessarily lossless), possibly stateful
translation between byte sequences and Unicode characters
and strings. Every transcoder can operate in the input
direction (bytes to characters) or in the output direction
(characters to bytes). A transcoder parameter name means
that the corresponding argument must be a transcoder.

A binary port is a port that supports binary I/O, does not
have an associated transcoder and does not support textual
I/O. A textual port is a port that supports textual I/O, and
does not support binary I/O. A textual port may or may
not have an associated transcoder.

(latin-1-codec) procedure
(utf-8-codec) procedure
(utf-16-codec) procedure

These are predefined codecs for the ISO 8859-1, UTF-8,
and UTF-16 encoding schemes [12].

A call to any of these procedures returns a value that is
equal in the sense of eqv? to the result of any other call to
the same procedure.

(eol-style 〈eol-style symbol〉) syntax

〈Eol-style symbol〉 should be a symbol whose name is one
of lf, cr, crlf, nel, crnel, ls, and none. The form
evaluates to the corresponding symbol. If the name of
eol-style symbol is not one of these symbols, the effect and
result are implementation-dependent; in particular, the re-
sult may be an eol-style symbol acceptable as an eol-style
argument to make-transcoder. Otherwise, an exception
is raised.

All eol-style symbols except none describe a specific line-
ending encoding:

lf 〈linefeed〉
cr 〈carriage return〉
crlf 〈carriage return〉 〈linefeed〉
nel 〈next line〉
crnel 〈carriage return〉 〈next line〉
ls 〈line separator〉
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For a textual port with a transcoder, and whose transcoder
has an eol-style symbol none, no conversion occurs. For a
textual input port, any eol-style symbol other than none

means that all of the above line-ending encodings are rec-
ognized and are translated into a single linefeed. For a
textual output port, none and lf are equivalent. Linefeed
characters are encoded according to the specified eol-style
symbol, and all other characters that participate in possi-
ble line endings are encoded as is.

Note: Only the name of 〈eol-style symbol〉 is significant.

(native-eol-style) procedure

Returns the default end-of-line style of the underlying plat-
form, e.g., lf on Unix and crlf on Windows.

&i/o-decoding condition type
(make-i/o-decoding-error pobj) procedure
(i/o-decoding-error? obj) procedure

This condition type could be defined by

(define-condition-type &i/o-decoding &i/o-port

make-i/o-decoding-error i/o-decoding-error?)

An exception with this type is raised when one of the oper-
ations for textual input from a port encounters a sequence
of bytes that cannot be translated into a character or string
by the input direction of the port’s transcoder.

When such an exception is raised, the port’s position is
past the invalid encoding.

&i/o-encoding condition type
(make-i/o-encoding-error pobj cobj) procedure
(i/o-encoding-error? obj) procedure
(i/o-encoding-error-char condition) procedure

This condition type could be defined by

(define-condition-type &i/o-encoding &i/o-port

make-i/o-encoding-error i/o-encoding-error?

(cobj i/o-encoding-error-char))

An exception with this type is raised when one of the oper-
ations for textual output to a port encounters a character
that cannot be translated into bytes by the output direc-
tion of the port’s transcoder. Cobj should be the character
that could not be encoded.

(error-handling-mode 〈error-handling-mode symbol〉)
syntax

〈Error-handling-mode symbol〉 should be a symbol whose
name is one of ignore, raise, and replace. The
form evaluates to the corresponding symbol. If
〈error-handling-mode symbol〉 is not one of these iden-
tifiers, effect and result are implementation-dependent:

The result may be an error-handling-mode symbol accept-
able as a handling-mode argument to make-transcoder.
If it is not acceptable as a handling-mode argument to
make-transcoder, an exception is raised.

Note: Only the name of 〈error-handling-style symbol〉 is sig-

nificant.

The error-handling mode of a transcoder specifies the be-
havior of textual I/O operations in the presence of encoding
or decoding errors.

If a textual input operation encounters an invalid or in-
complete character encoding, and the error-handling mode
is ignore, an appropriate number of bytes of the invalid
encoding are ignored and decoding continues with the fol-
lowing bytes. If the error-handling mode is replace, the
replacement character U+FFFD is injected into the data
stream, an appropriate number of bytes are ignored, and
decoding continues with the following bytes. If the error-
handling mode is raise, an exception with condition type
&i/o-decoding is raised.

If a textual output operation encounters a character it can-
not encode, and the error-handling mode is ignore, the
character is ignored and encoding continues with the next
character. If the error-handling mode is replace, a codec-
specific replacement character is emitted by the transcoder,
and encoding continues with the next character. The re-
placement character is U+FFFD for transcoders whose
codec is one of the Unicode encodings, but is the ? charac-
ter for the Latin-1 encoding. If the error-handling mode is
raise, an exception with condition type &i/o-encoding

is raised.

(make-transcoder codec) procedure
(make-transcoder codec eol-style) procedure
(make-transcoder codec eol-style handling-mode)

procedure

Codec must be a codec; eol-style, if present, an eol-style
symbol; and handling-mode, if present, an error-handling-
mode symbol. Eol-style may be omitted, in which case it
defaults to the native end-of-line style of the underlying
platform. Handling-mode may be omitted, in which case
it defaults to replace. The result is a transcoder with the
behavior specified by its arguments.

(native-transcoder) procedure

Returns an implementation-dependent transcoder that
represents a possibly locale-dependent “native” transcod-
ing.

(transcoder-codec transcoder) procedure
(transcoder-eol-style transcoder) procedure
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(transcoder-error-handling-mode transcoder)
procedure

These are accessors for transcoder objects; when applied
to a transcoder returned by make-transcoder, they re-
turn the codec, eol-style, and handling-mode arguments,
respectively.

(bytevector->string bytevector transcoder) procedure

Returns the string that results from transcoding the
bytevector according to the input direction of the
transcoder.

(string->bytevector string transcoder) procedure

Returns the bytevector that results from transcoding the
string according to the output direction of the transcoder.

8.2.5. End-of-file object

The end-of-file object is returned by various I/O procedures
when they reach end of file.

(eof-object) procedure

Returns the end-of-file object.

(eqv? (eof-object) (eof-object))

=⇒ #t

(eq? (eof-object) (eof-object))

=⇒ #t

Note: The end-of-file object is not a datum value, and thus

has no external representation.

(eof-object? obj) procedure

Returns #t if obj is the end-of-file object, #f otherwise.

8.2.6. Input and output ports

The operations described in this section are common to
input and output ports, both binary and textual. A port
may also have an associated position that specifies a par-
ticular place within its data sink or source, and may also
provide operations for inspecting and setting that place.

(port? obj) procedure

Returns #t if the argument is a port, and returns #f oth-
erwise.

(port-transcoder port) procedure

Returns the transcoder associated with port if port is tex-
tual and has an associated transcoder, and returns #f if
port is binary or does not have an associated transcoder.

(textual-port? port) procedure
(binary-port? port) procedure

The textual-port? procedure returns #t if port is textual,
and returns #f otherwise. The binary-port? procedure
returns #t if port is binary, and returns #f otherwise.

(transcoded-port binary-port transcoder) procedure

The transcoded-port procedure returns a new textual
port with the specified transcoder . Otherwise the new tex-
tual port’s state is largely the same as that of binary-port .
If binary-port is an input port, the new textual port will be
an input port and will transcode the bytes that have not
yet been read from binary-port . If binary-port is an output
port, the new textual port will be an output port and will
transcode output characters into bytes that are written to
the byte sink represented by binary-port .

As a side effect, however, transcoded-port closes
binary-port in a special way that allows the new textual
port to continue to use the byte source or sink represented
by binary-port , even though binary-port itself is closed and
cannot be used by the input and output operations de-
scribed in this chapter.

(port-has-port-position? port) procedure
(port-position port) procedure

The port-has-port-position? procedure returns #t if
the port supports the port-position operation, and #f

otherwise.

For a binary port, the port-position procedure returns
the index of the position at which the next byte would be
read from or written to the port as an exact non-negative
integer object. For a textual port, port-position returns
a value of some implementation-dependent type represent-
ing the port’s position; this value may be useful only as
the pos argument to set-port-position!, if the latter is
supported on the port (see below).

If the port does not support the operation, port-position
raises an exception with condition type &assertion.

Note: For a textual port, the port position may or may not be

an integer object. If it is an integer object, the integer object

does not necessarily correspond to a byte or character position.

(port-has-set-port-position!? port) procedure
(set-port-position! port pos) procedure

If port is a binary port, pos should be a non-negative exact
integer object. If port is a textual port, pos should be the
return value of a call to port-position on port .

The port-has-set-port-position!? procedure returns
#t if the port supports the set-port-position! opera-
tion, and #f otherwise.
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The set-port-position! procedure raises an exception
with condition type &assertion if the port does not
support the operation, and an exception with condition
type &i/o-invalid-position if pos is not in the range
of valid positions of port . Otherwise, it sets the cur-
rent position of the port to pos. If port is an out-
put port, set-port-position! first flushes port . (See
flush-output-port, section 8.2.10.)

If port is a binary output port and the current po-
sition is set beyond the current end of the data in
the underlying data sink, the object is not extended
until new data is written at that position. The
contents of any intervening positions are unspecified.
Binary ports created by open-file-output-port and
open-file-input/output-port can always be extended
in this manner within the limits of the underlying op-
erating system. In other cases, attempts to set the
port beyond the current end of data in the underlying
object may result in an exception with condition type
&i/o-invalid-position.

(close-port port) procedure

Closes the port, rendering the port incapable of delivering
or accepting data. If port is an output port, it is flushed
before being closed. This has no effect if the port has
already been closed. A closed port is still a port. The
close-port procedure returns unspecified values.

(call-with-port port proc) procedure

Proc must accept one argument. The call-with-port

procedure calls proc with port as an argument. If proc re-
turns, port is closed automatically and the values returned
by proc are returned. If proc does not return, port is not
closed automatically, except perhaps when it is possible to
prove that port will never again be used for an input or
output operation.

8.2.7. Input ports

An input port allows the reading of an infinite sequence of
bytes or characters punctuated by end-of-file objects. An
input port connected to a finite data source ends in an
infinite sequence of end-of-file objects.

It is unspecified whether a character encoding consisting of
several bytes may have an end of file between the bytes. If,
for example, get-char raises an &i/o-decoding exception
because the character encoding at the port’s position is
incomplete up to the next end of file, a subsequent call
to get-char may successfully decode a character if bytes
completing the encoding are available after the end of file.

(input-port? obj) procedure

Returns #t if the argument is an input port (or a combined
input and output port), and returns #f otherwise.

(port-eof? input-port) procedure

Returns #t if the lookahead-u8 procedure (if input-port
is a binary port) or the lookahead-char procedure (if
input-port is a textual port) would return the end-of-file
object, and #f otherwise. The operation may block in-
definitely if no data is available but the port cannot be
determined to be at end of file.

(open-file-input-port filename) procedure
(open-file-input-port filename file-options)

procedure
(open-file-input-port filename procedure

file-options buffer-mode)
(open-file-input-port filename procedure

file-options buffer-mode maybe-transcoder)

Maybe-transcoder must be either a transcoder or #f.

The open-file-input-port procedure returns an in-
put port for the named file. The file-options and
maybe-transcoder arguments are optional.

The file-options argument, which may determine various
aspects of the returned port (see section 8.2.2), defaults to
the value of (file-options).

The buffer-mode argument, if supplied, must be one of the
symbols that name a buffer mode. The buffer-mode argu-
ment defaults to block.

If maybe-transcoder is a transcoder, it becomes the
transcoder associated with the returned port.

If maybe-transcoder is #f or absent, the port will be
a binary port and will support the port-position

and set-port-position! operations. Otherwise the
port will be a textual port, and whether it supports
the port-position and set-port-position! operations
is implementation-dependent (and possibly transcoder-
dependent).

(open-bytevector-input-port bytevector) procedure
(open-bytevector-input-port bytevector procedure

maybe-transcoder)

Maybe-transcoder must be either a transcoder or #f.

The open-bytevector-input-port procedure returns an
input port whose bytes are drawn from bytevector . If
transcoder is specified, it becomes the transcoder associ-
ated with the returned port.

If maybe-transcoder is #f or absent, the port will be
a binary port and will support the port-position and
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set-port-position! operations. Otherwise the port
will be a textual port, and whether it supports the
port-position and set-port-position! operations will
be implementation-dependent (and possibly transcoder-
dependent).

If bytevector is modified after open-bytevector-input-

port has been called, the effect on the returned port is
unspecified.

(open-string-input-port string) procedure

Returns a textual input port whose characters are drawn
from string . The port may or may not have an associated
transcoder; if it does, the transcoder is implementation-
dependent. The port should support the port-position

and set-port-position! operations.

If string is modified after open-string-input-port has
been called, the effect on the returned port is unspecified.

(standard-input-port) procedure

Returns a fresh binary input port connected to standard
input. Whether the port supports the port-position

and set-port-position! operations is implementation-
dependent.

(current-input-port) procedure

This returns a default textual port for input. Nor-
mally, this default port is associated with standard
input, but can be dynamically re-assigned using the
with-input-from-file procedure from the (rnrs io

simple (6)) library (see section 8.3). The port may or
may not have an associated transcoder; if it does, the
transcoder is implementation-dependent.

(make-custom-binary-input-port id read! procedure
get-position set-position! close)

Returns a newly created binary input port whose byte
source is an arbitrary algorithm represented by the read!
procedure. Id must be a string naming the new port, pro-
vided for informational purposes only. Read! must be a
procedure and should behave as specified below; it will be
called by operations that perform binary input.

Each of the remaining arguments may be #f; if any of those
arguments is not #f, it must be a procedure and should
behave as specified below.

• (read! bytevector start count)

Start will be a non-negative exact integer object, count
will be a positive exact integer object, and bytevector
will be a bytevector whose length is at least start +
count . The read! procedure should obtain up to count

bytes from the byte source, and should write those
bytes into bytevector starting at index start . The read!
procedure should return an exact integer object. This
integer object should represent the number of bytes
that it has read. To indicate an end of file, the read!
procedure should write no bytes and return 0.

• (get-position)

The get-position procedure (if supplied) should return
an exact integer object representing the current po-
sition of the input port. If not supplied, the custom
port will not support the port-position operation.

• (set-position! pos)

Pos will be a non-negative exact integer object. The
set-position! procedure (if supplied) should set the po-
sition of the input port to pos. If not supplied, the cus-
tom port will not support the set-port-position!

operation.

• (close)

The close procedure (if supplied) should perform any
actions that are necessary when the input port is
closed.

Implementation responsibilities: The implementation must
check the return values of read! and get-position only when
it actually calls them as part of an I/O operation requested
by the program. The implementation is not required to
check that these procedures otherwise behave as described.
If they do not, however, the behavior of the resulting port
is unspecified.

(make-custom-textual-input-port id read! procedure
get-position set-position! close)

Returns a newly created textual input port whose char-
acter source is an arbitrary algorithm represented by the
read! procedure. Id must be a string naming the new port,
provided for informational purposes only. Read! must be a
procedure and should behave as specified below; it will be
called by operations that perform textual input.

Each of the remaining arguments may be #f; if any of those
arguments is not #f, it must be a procedure and should
behave as specified below.

• (read! string start count)

Start will be a non-negative exact integer object, count
will be a positive exact integer object, and string will
be a string whose length is at least start + count . The
read! procedure should obtain up to count charac-
ters from the character source, and should write those
characters into string starting at index start . The
read! procedure should return an exact integer object
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representing the number of characters that it has writ-
ten. To indicate an end of file, the read! procedure
should write no bytes and return 0.

• (get-position)

The get-position procedure (if supplied) should return
a single value. The return value should represent the
current position of the input port. If not supplied,
the custom port will not support the port-position

operation.

• (set-position! pos)

The set-position! procedure (if supplied) should set
the position of the input port to pos if pos is the return
value of a call to get-position. If not supplied, the cus-
tom port will not support the set-port-position!

operation.

• (close)

The close procedure (if supplied) should perform any
actions that are necessary when the input port is
closed.

The port may or may not have an an associated transcoder;
if it does, the transcoder is implementation-dependent.

Implementation responsibilities: The implementation must
check the return values of read! and get-position only when
it actually calls them as part of an I/O operation requested
by the program. The implementation is not required to
check that these procedures otherwise behave as described.
If they do not, however, the behavior of the resulting port
is unspecified.

Note: Even when the get-position procedure is supplied,

the port-position procedure cannot generally return a pre-

cise value for a custom textual input port if data has been read

from the port. Therefore, it is likely that this entry will change

in a future version of the report.

8.2.8. Binary input

(get-u8 binary-input-port) procedure

Reads from binary-input-port , blocking as necessary, until
a byte is available from binary-input-port or until an end of
file is reached. If a byte becomes available, get-u8 returns
the byte as an octet and updates binary-input-port to point
just past that byte. If no input byte is seen before an end
of file is reached, the end-of-file object is returned.

(lookahead-u8 binary-input-port) procedure

The lookahead-u8 procedure is like get-u8, but it does
not update binary-input-port to point past the byte.

(get-bytevector-n binary-input-port count) procedure

Count must be an exact, non-negative integer ob-
ject representing the number of bytes to be read.
The get-bytevector-n procedure reads from
binary-input-port , blocking as necessary, until count
bytes are available from binary-input-port or until an end
of file is reached. If count bytes are available before an
end of file, get-bytevector-n returns a bytevector of size
count . If fewer bytes are available before an end of file,
get-bytevector-n returns a bytevector containing those
bytes. In either case, the input port is updated to point
just past the bytes read. If an end of file is reached before
any bytes are available, get-bytevector-n returns the
end-of-file object.

(get-bytevector-n! binary-input-port procedure
bytevector start count)

Start and count must be exact, non-negative integer ob-
jects, with count representing the number of bytes to
be read. bytevector must be a bytevector with at least
start + count elements.

The get-bytevector-n! procedure reads from
binary-input-port , blocking as necessary, until count
bytes are available from binary-input-port or until an end
of file is reached. If count bytes are available before an end
of file, they are written into bytevector starting at index
start , and the result is count . If fewer bytes are available
before the next end of file, the available bytes are written
into bytevector starting at index start , and the result is a
number object representing the number of bytes actually
read. In either case, the input port is updated to point
just past the bytes read. If an end of file is reached before
any bytes are available, get-bytevector-n! returns the
end-of-file object.

(get-bytevector-some binary-input-port) procedure

Reads from binary-input-port , blocking as necessary, un-
til bytes are available from binary-input-port or until
an end of file is reached. If bytes become available,
get-bytevector-some returns a freshly allocated bytevec-
tor containing the initial available bytes (at least one), and
it updates binary-input-port to point just past these bytes.
If no input bytes are seen before an end of file is reached,
the end-of-file object is returned.

(get-bytevector-all binary-input-port) procedure

Attempts to read all bytes until the next end of file,
blocking as necessary. If one or more bytes are
read, get-bytevector-all returns a bytevector contain-
ing all bytes up to the next end of file and updates
binary-input-port to point just past these bytes. Other-
wise, get-bytevector-all returns the end-of-file object.
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The operation may block indefinitely waiting to see if more
bytes will become available, even if some bytes are already
available.

8.2.9. Textual input

(get-char textual-input-port) procedure

Reads from textual-input-port , blocking as necessary, until
a complete character is available from textual-input-port ,
or until an end of file is reached.

If a complete character is available before the next end
of file, get-char returns that character and updates the
input port to point past the character. If an end of file is
reached before any character is read, get-char returns the
end-of-file object.

(lookahead-char textual-input-port) procedure

The lookahead-char procedure is like get-char, but it
does not update textual-input-port to point past the char-
acter.

Note: With some of the standard transcoders described in this

document, up to four bytes of lookahead are needed. Nonstan-

dard transcoders may need even more lookahead.

(get-string-n textual-input-port count) procedure

Count must be an exact, non-negative integer object, rep-
resenting the number of characters to be read.

The get-string-n procedure reads from
textual-input-port , blocking as necessary, until count
characters are available, or until an end of file is reached.

If count characters are available before end of file,
get-string-n returns a string consisting of those count
characters. If fewer characters are available before an
end of file, but one or more characters can be read,
get-string-n returns a string containing those characters.
In either case, the input port is updated to point just past
the characters read. If no characters can be read before an
end of file, the end-of-file object is returned.

(get-string-n! textual-input-port string start count)
procedure

Start and count must be exact, non-negative integer ob-
jects, with count representing the number of characters to
be read. String must be a string with at least start +count
characters.

The get-string-n! procedure reads from
textual-input-port in the same manner as get-string-n.
If count characters are available before an end of file, they
are written into string starting at index start , and count
is returned. If fewer characters are available before an end

of file, but one or more can be read, those characters are
written into string starting at index start and the number
of characters actually read is returned as an exact integer
object. If no characters can be read before an end of file,
the end-of-file object is returned.

(get-string-all textual-input-port) procedure

Reads from textual-input-port until an end of file, decod-
ing characters in the same manner as get-string-n and
get-string-n!.

If characters are available before the end of file, a string
containing all the characters decoded from that data are
returned. If no character precedes the end of file, the end-
of-file object is returned.

(get-line textual-input-port) procedure

Reads from textual-input-port up to and including the line-
feed character or end of file, decoding characters in the
same manner as get-string-n and get-string-n!.

If a linefeed character is read, a string containing all of
the text up to (but not including) the linefeed character is
returned, and the port is updated to point just past the
linefeed character. If an end of file is encountered before
any linefeed character is read, but some characters have
been read and decoded as characters, a string containing
those characters is returned. If an end of file is encoun-
tered before any characters are read, the end-of-file object
is returned.

Note: The end-of-line style, if not none, will cause all line

endings to be read as linefeed characters. See section 8.2.4.

(get-datum textual-input-port) procedure

Reads an external representation from textual-input-port
and returns the datum it represents. The get-datum pro-
cedure returns the next datum that can be parsed from
the given textual-input-port , updating textual-input-port to
point exactly past the end of the external representation
of the object.

Any 〈interlexeme space〉 (see report section 4.2) in the
input is first skipped. If an end of file occurs after
the 〈interlexeme space〉, the end-of-file object (see sec-
tion 8.2.5) is returned.

If a character inconsistent with an external representation
is encountered in the input, an exception with condition
types &lexical and &i/o-read is raised. Also, if the end
of file is encountered after the beginning of an external
representation, but the external representation is incom-
plete and therefore cannot be parsed, an exception with
condition types &lexical and &i/o-read is raised.
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8.2.10. Output ports

An output port is a sink to which bytes or characters are
written. The written data may control external devices or
may produce files and other objects that may subsequently
be opened for input.

(output-port? obj) procedure

Returns #t if the argument is an output port (or a com-
bined input and output port), #f otherwise.

(flush-output-port output-port) procedure

Flushes any buffered output from the buffer of output-port
to the underlying file, device, or object. The
flush-output-port procedure returns unspecified values.

(output-port-buffer-mode output-port) procedure

Returns the symbol that represents the buffer mode of
output-port .

(open-file-output-port filename) procedure
(open-file-output-port filename file-options)

procedure
(open-file-output-port filename procedure

file-options buffer-mode)
(open-file-output-port filename procedure

file-options buffer-mode maybe-transcoder)

Maybe-transcoder must be either a transcoder or #f.

The open-file-output-port procedure returns an output
port for the named file.

The file-options argument, which may determine various
aspects of the returned port (see section 8.2.2), defaults to
the value of (file-options).

The buffer-mode argument, if supplied, must be one of the
symbols that name a buffer mode. The buffer-mode argu-
ment defaults to block.

If maybe-transcoder is a transcoder, it becomes the
transcoder associated with the port.

If maybe-transcoder is #f or absent, the port will be
a binary port and will support the port-position

and set-port-position! operations. Otherwise the
port will be a textual port, and whether it supports
the port-position and set-port-position! operations
is implementation-dependent (and possibly transcoder-
dependent).

(open-bytevector-output-port) procedure
(open-bytevector-output-port maybe-transcoder)

procedure

Maybe-transcoder must be either a transcoder or #f.

The open-bytevector-output-port procedure returns
two values: an output port and an extraction procedure.
The output port accumulates the bytes written to it for
later extraction by the procedure.

If maybe-transcoder is a transcoder, it becomes the
transcoder associated with the port. If maybe-transcoder is
#f or absent, the port will be a binary port and will support
the port-position and set-port-position! operations.
Otherwise the port will be a textual port, and whether
it supports the port-position and set-port-position!

operations is implementation-dependent (and possibly
transcoder-dependent).

The extraction procedure takes no arguments. When
called, it returns a bytevector consisting of all the port’s
accumulated bytes (regardless of the port’s current posi-
tion), removes the accumulated bytes from the port, and
resets the port’s position.

(call-with-bytevector-output-port proc) procedure
(call-with-bytevector-output-port proc procedure

maybe-transcoder)

Proc must accept one argument. Maybe-transcoder must
be either a transcoder or #f.

The call-with-bytevector-output-port procedure cre-
ates an output port that accumulates the bytes written
to it and calls proc with that output port as an argument.
Whenever proc returns, a bytevector consisting of all of the
port’s accumulated bytes (regardless of the port’s current
position) is returned and the port is closed.

The transcoder associated with the output port is deter-
mined as for a call to open-bytevector-output-port.

(open-string-output-port) procedure

Returns two values: a textual output port and an extrac-
tion procedure. The output port accumulates the charac-
ters written to it for later extraction by the procedure.

The port may or may not have an associated transcoder;
if it does, the transcoder is implementation-dependent.
The port should support the port-position and
set-port-position! operations.

The extraction procedure takes no arguments. When
called, it returns a string consisting of all of the port’s ac-
cumulated characters (regardless of the current position),
removes the accumulated characters from the port, and re-
sets the port’s position.

(call-with-string-output-port proc) procedure

Proc must accept one argument. The call-with-string-

output-port procedure creates a textual output port that
accumulates the characters written to it and calls proc with
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that output port as an argument. Whenever proc returns, a
string consisting of all of the port’s accumulated characters
(regardless of the port’s current position) is returned and
the port is closed.

The port may or may not have an associated transcoder;
if it does, the transcoder is implementation-dependent.
The port should support the port-position and
set-port-position! operations.

(standard-output-port) procedure
(standard-error-port) procedure

Returns a fresh binary output port connected to
the standard output or standard error respectively.
Whether the port supports the port-position and
set-port-position! operations is implementation-
dependent.

(current-output-port) procedure
(current-error-port) procedure

These return default textual ports for regular output and
error output. Normally, these default ports are associ-
ated with standard output, and standard error, respec-
tively. The return value of current-output-port can be
dynamically re-assigned using the with-output-to-file

procedure from the (rnrs io simple (6)) library (see
section 8.3). A port returned by one of these procedures
may or may not have an associated transcoder; if it does,
the transcoder is implementation-dependent.

(make-custom-binary-output-port id procedure
write! get-position set-position! close)

Returns a newly created binary output port whose byte
sink is an arbitrary algorithm represented by the write!
procedure. Id must be a string naming the new port, pro-
vided for informational purposes only. Write! must be a
procedure and should behave as specified below; it will be
called by operations that perform binary output.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-binary-input-port.

• (write! bytevector start count)

Start and count will be non-negative exact integer ob-
jects, and bytevector will be a bytevector whose length
is at least start + count . The write! procedure should
write up to count bytes from bytevector starting at
index start to the byte sink. The write! procedure
should return the number of bytes that it wrote, as an
exact integer object.

Implementation responsibilities: The implementation must
check the return values of write! only when it actually calls
write! as part of an I/O operation requested by the pro-
gram. The implementation is not required to check that
write! otherwise behaves as described. If it does not, how-
ever, the behavior of the resulting port is unspecified.

(make-custom-textual-output-port id procedure
write! get-position set-position! close)

Returns a newly created textual output port whose byte
sink is an arbitrary algorithm represented by the write!
procedure. Id must be a string naming the new port, pro-
vided for informational purposes only. Write! must be a
procedure and should behave as specified below; it will be
called by operations that perform textual output.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-textual-input-port.

• (write! string start count)

Start and count will be non-negative exact integer
objects, and string will be a string whose length is
at least start + count . The write! procedure should
write up to count characters from string starting at
index start to the character sink. The write! proce-
dure should return the number of characters that it
wrote, as an exact integer object.

The port may or may not have an associated transcoder;
if it does, the transcoder is implementation-dependent.

Implementation responsibilities: The implementation must
check the return values of write! only when it actually calls
write! as part of an I/O operation requested by the pro-
gram. The implementation is not required to check that
write! otherwise behaves as described. If it does not, how-
ever, the behavior of the resulting port is unspecified.

8.2.11. Binary output

(put-u8 binary-output-port octet) procedure

Writes octet to the output port and returns unspecified
values.

(put-bytevector binary-output-port bytevector)
procedure

(put-bytevector binary-output-port bytevector start)
procedure

(put-bytevector binary-output-port procedure
bytevector start count)
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Start and count must be non-negative exact integer objects
that default to 0 and (bytevector-length bytevector)−
start , respectively. Bytevector must have a length of at
least start +count . The put-bytevector procedure writes
the count bytes of the bytevector bytevector starting at
index start to the output port. The put-bytevector pro-
cedure returns unspecified values.

8.2.12. Textual output

(put-char textual-output-port char) procedure

Writes char to the port. The put-char procedure returns
unspecified values.

(put-string textual-output-port string) procedure
(put-string textual-output-port string start) procedure
(put-string textual-output-port string start count)

procedure

Start and count must be non-negative exact integer ob-
jects. String must have a length of at least start +
count . Start defaults to 0. Count defaults to
(string-length string)− start . The put-string proce-
dure writes the count characters of string starting at index
start to the port. The put-string procedure returns un-
specified values.

(put-datum textual-output-port datum) procedure

Datum should be a datum value. The put-datum pro-
cedure writes an external representation of datum to
textual-output-port . The specific external representation
is implementation-dependent. However, whenever possi-
ble, an implementation should produce a representation
for which get-datum, when reading the representation, will
return an object equal (in the sense of equal?) to datum.

Note: Not all datums may allow producing an external rep-

resentation for which get-datum will produce an object that is

equal to the original. Specifically, NaNs contained in datum

may make this impossible.

Note: The put-datum procedure merely writes the external

representation, but no trailing delimiter. If put-datum is used to

write several subsequent external representations to an output

port, care should be taken to delimit them properly so they can

be read back in by subsequent calls to get-datum.

8.2.13. Input/output ports

(open-file-input/output-port filename) procedure
(open-file-input/output-port filename file-options)

procedure
(open-file-input/output-port filename procedure

file-options buffer-mode)

(open-file-input/output-port filename procedure
file-options buffer-mode transcoder)

Returns a single port that is both an input port and
an output port for the named file. The optional ar-
guments default as described in the specification of
open-file-output-port. If the input/output port sup-
ports port-position and/or set-port-position!, the
same port position is used for both input and output.

(make-custom-binary-input/output-port procedure
id read! write! get-position set-position! close)

Returns a newly created binary input/output port whose
byte source and sink are arbitrary algorithms rep-
resented by the read! and write! procedures. Id
must be a string naming the new port, provided
for informational purposes only. Read! and write!
must be procedures, and should behave as spec-
ified for the make-custom-binary-input-port and
make-custom-binary-output-port procedures.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-binary-input-port.

Note: Unless both get-position and set-position! procedures

are supplied, a put operation cannot precisely position the port

for output to a custom binary input/output port after data has

been read from the port. Therefore, it is likely that this entry

will change in a future version of the report.

(make-custom-textual-input/output-port procedure
id read! write! get-position set-position! close)

Returns a newly created textual input/output port
whose textual source and sink are arbitrary algo-
rithms represented by the read! and write! proce-
dures. Id must be a string naming the new port,
provided for informational purposes only. Read! and
write! must be procedures, and should behave as
specified for the make-custom-textual-input-port and
make-custom-textual-output-port procedures.

Each of the remaining arguments may be #f; if any
of those arguments is not #f, it must be a procedure
and should behave as specified in the description of
make-custom-textual-input-port.

Note: Even when both get-position and set-position! proce-

dures are supplied, the port-position procedure cannot gen-

erally return a precise value for a custom textual input/output

port, and a put operation cannot precisely position the port for

output, after data has been read from the port. Therefore, it

is likely that this entry will change in a future version of the

report.
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8.3. Simple I/O

This section describes the (rnrs io simple (6)) library,
which provides a somewhat more convenient interface for
performing textual I/O on ports. This library implements
most of the I/O procedures of the previous revision of this
report [8].

The ports created by the procedures of this library
are textual ports associated implementation-dependent
transcoders.

(eof-object) procedure
(eof-object? obj) procedure

These are the same as eof-object and eof-object? from
the (rnrs io ports (6)) library.

(call-with-input-file filename proc) procedure
(call-with-output-file filename proc) procedure

Proc should accept one argument. These procedures open
the file named by filename for input or for output, with
no specified file options, and call proc with the obtained
port as an argument. If proc returns, the port is closed
automatically and the values returned by proc are returned.
If proc does not return, the port is not closed automatically,
unless it is possible to prove that the port will never again
be used for an I/O operation.

(input-port? obj) procedure
(output-port? obj) procedure

These are the same as the input-port? and output-port?

procedures in the (rnrs io ports (6)) library.

(current-input-port) procedure
(current-output-port) procedure
(current-error-port) procedure

These are the same as the current-input-port,
current-output-port, and current-error-port proce-
dures from the (rnrs io ports (6)) library.

(with-input-from-file filename thunk) procedure
(with-output-to-file filename thunk) procedure

Thunk must be a procedure and must accept zero argu-
ments. The file is opened for input or output using empty
file options, and thunk is called with no arguments. Dur-
ing the dynamic extent of the call to thunk , the obtained
port is made the value returned by current-input-port

or current-output-port procedures; the previous default
values are reinstated when the dynamic extent is exited.
When thunk returns, the port is closed automatically. The

values returned by thunk are returned. If an escape pro-
cedure is used to escape back into the call to thunk after
thunk is returned, the behavior is unspecified.

(open-input-file filename) procedure

Opens filename for input, with empty file options, and re-
turns the obtained port.

(open-output-file filename) procedure

Opens filename for output, with empty file options, and
returns the obtained port.

(close-input-port input-port) procedure
(close-output-port output-port) procedure

Closes input-port or output-port , respectively.

(read-char) procedure
(read-char textual-input-port) procedure

Reads from textual-input-port , blocking as necessary un-
til a character is available from textual-input-port , or the
data that are available cannot be the prefix of any valid
encoding, or an end of file is reached.

If a complete character is available before the next end of
file, read-char returns that character, and updates the
input port to point past that character. If an end of file is
reached before any data are read, read-char returns the
end-of-file object.

If textual-input-port is omitted, it defaults to the value re-
turned by current-input-port.

(peek-char) procedure
(peek-char textual-input-port) procedure

This is the same as read-char, but does not consume any
data from the port.

(read) procedure
(read textual-input-port) procedure

Reads an external representation from textual-input-port
and returns the datum it represents. The read procedure
operates in the same way as get-datum, see section 8.2.9.

If textual-input-port is omitted, it defaults to the value re-
turned by current-input-port.

(write-char char) procedure
(write-char char textual-output-port) procedure

Writes an encoding of the character char to the
textual-output-port , and returns unspecified values.
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If textual-output-port is omitted, it defaults to the value
returned by current-output-port.

(newline) procedure
(newline textual-output-port) procedure

This is equivalent to using write-char to write
#\linefeed to textual-output-port .

If textual-output-port is omitted, it defaults to the value
returned by current-output-port.

(display obj) procedure
(display obj textual-output-port) procedure

Writes a representation of obj to the given
textual-output-port . Strings that appear in the writ-
ten representation are not enclosed in doublequotes, and
no characters are escaped within those strings. Character
objects appear in the representation as if written by
write-char instead of by write. The display procedure
returns unspecified values. The textual-output-port argu-
ment may be omitted, in which case it defaults to the
value returned by current-output-port.

(write obj) procedure
(write obj textual-output-port) procedure

Writes the external representation of obj to
textual-output-port . The write procedure operates
in the same way as put-datum; see section 8.2.12.

If textual-output-port is omitted, it defaults to the value
returned by current-output-port.

9. File system

This chapter describes the (rnrs files (6)) library for
operations on the file system. This library, in addition to
the procedures described here, also exports the I/O condi-
tion types described in section 8.1.

(file-exists? filename) procedure

Filename must be a file name (see section 8.2.1). The
file-exists? procedure returns #t if the named file exists
at the time the procedure is called, #f otherwise.

(delete-file filename) procedure

Filename must be a file name (see section 8.2.1). The
delete-file procedure deletes the named file if it exists
and can be deleted, and returns unspecified values. If the
file does not exist or cannot be deleted, an exception with
condition type &i/o-filename is raised.

10. Command-line access and exit values

The procedures described in this section are exported by
the (rnrs programs (6)) library.

(command-line) procedure

Returns a nonempty list of strings. The first element is
an implementation-specific name for the running top-level
program. The remaining elements are command-line ar-
guments according to the operating system’s conventions.

(exit) procedure
(exit obj) procedure

Exits the running program and communicates an exit value
to the operating system. If no argument is supplied, the
exit procedure should communicate to the operating sys-
tem that the program exited normally. If an argument
is supplied, the exit procedure should translate the ar-
gument into an appropriate exit value for the operating
system. If obj is #f, the exit is assumed to be abnormal.

11. Arithmetic

This chapter describes Scheme’s libraries for more special-
ized numerical operations: fixnum and flonum arithmetic,
as well as bitwise operations on exact integer objects.

11.1. Bitwise operations

A number of procedures operate on the binary two’s-
complement representations of exact integer objects: Bit
positions within an exact integer object are counted from
the right, i.e. bit 0 is the least significant bit. Some proce-
dures allow extracting bit fields, i.e., number objects rep-
resenting subsequences of the binary representation of an
exact integer object. Bit fields are always positive, and
always defined using a finite number of bits.

11.2. Fixnums

Every implementation must define its fixnum range as a
closed interval

[−2w−1, 2w−1 − 1]

such that w is a (mathematical) integer w ≥ 24. Every
mathematical integer within an implementation’s fixnum
range must correspond to an exact integer object that is
representable within the implementation. A fixnum is an
exact integer object whose value lies within this fixnum
range.

This section describes the (rnrs arithmetic fixnums

(6)) library, which defines various operations on fixnums.
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Fixnum operations perform integer arithmetic on their
fixnum arguments, but raise an exception with condition
type &implementation-restriction if the result is not a
fixnum.

This section uses fx , fx1, fx2, etc., as parameter names for
arguments that must be fixnums.

(fixnum? obj) procedure

Returns #t if obj is an exact integer object within the
fixnum range, #f otherwise.

(fixnum-width) procedure
(least-fixnum) procedure
(greatest-fixnum) procedure

These procedures return w, −2w−1 and 2w−1 − 1: the
width, minimum and the maximum value of the fixnum
range, respectively.

(fx=? fx1 fx2 fx3 . . . ) procedure
(fx>? fx1 fx2 fx3 . . . ) procedure
(fx<? fx1 fx2 fx3 . . . ) procedure
(fx>=? fx1 fx2 fx3 . . . ) procedure
(fx<=? fx1 fx2 fx3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, #f otherwise.

(fxzero? fx) procedure
(fxpositive? fx) procedure
(fxnegative? fx) procedure
(fxodd? fx) procedure
(fxeven? fx) procedure

These numerical predicates test a fixnum for a particular
property, returning #t or #f. The five properties tested by
these procedures are: whether the number object is zero,
greater than zero, less than zero, odd, or even.

(fxmax fx1 fx2 . . . ) procedure
(fxmin fx1 fx2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.

(fx+ fx1 fx2) procedure
(fx* fx1 fx2) procedure

These procedures return the sum or product of
their arguments, provided that sum or product
is a fixnum. An exception with condition type
&implementation-restriction is raised if that sum
or product is not a fixnum.

(fx- fx1 fx2) procedure
(fx- fx) procedure

With two arguments, this procedure returns the difference
fx1 − fx2, provided that difference is a fixnum.

With one argument, this procedure returns the additive
inverse of its argument, provided that integer object is a
fixnum.

An exception with condition type
&implementation-restriction is raised if the math-
ematically correct result of this procedure is not a
fixnum.

(fx- (least-fixnum))

=⇒ &implementation-restriction exception

(fxdiv-and-mod fx1 fx2) procedure
(fxdiv fx1 fx2) procedure
(fxmod fx1 fx2) procedure
(fxdiv0-and-mod0 fx1 fx2) procedure
(fxdiv0 fx1 fx2) procedure
(fxmod0 fx1 fx2) procedure

Fx2 must be nonzero. These procedures implement
number-theoretic integer division and return the results of
the corresponding mathematical operations specified in re-
port section 11.7.3.

(fxdiv fx1 fx2) =⇒ fx1 div fx2
(fxmod fx1 fx2) =⇒ fx1 mod fx2
(fxdiv-and-mod fx1 fx2)

=⇒ fx1 div fx2, fx1 mod fx2
; two return values

(fxdiv0 fx1 fx2) =⇒ fx1 div0 fx2
(fxmod0 fx1 fx2) =⇒ fx1 mod0 fx2
(fxdiv0-and-mod0 fx1 fx2)

=⇒ fx1 fx1 div0 fx2, fx1 mod0 fx2
; two return values

(fx+/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((s (+ fx1 fx2 fx3))
(s0 (mod0 s (expt 2 (fixnum-width))))

(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

(fx-/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((d (- fx1 fx2 fx3))
(d0 (mod0 d (expt 2 (fixnum-width))))

(d1 (div0 d (expt 2 (fixnum-width)))))

(values d0 d1))
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(fx*/carry fx1 fx2 fx3) procedure

Returns the two fixnum results of the following computa-
tion:

(let* ((s (+ (* fx1 fx2) fx3))
(s0 (mod0 s (expt 2 (fixnum-width))))

(s1 (div0 s (expt 2 (fixnum-width)))))

(values s0 s1))

(fxnot fx) procedure

Returns the unique fixnum that is congruent mod 2w to
the one’s-complement of fx .

(fxand fx1 . . . ) procedure
(fxior fx1 . . . ) procedure
(fxxor fx1 . . . ) procedure

These procedures return the fixnum that is the bit-wise
“and”, “inclusive or”, or “exclusive or” of the two’s com-
plement representations of their arguments. If they are
passed only one argument, they return that argument. If
they are passed no arguments, they return the fixnum (ei-
ther −1 or 0) that acts as identity for the operation.

(fxif fx1 fx2 fx3) procedure

Returns the fixnum that is the bit-wise “if” of the two’s
complement representations of its arguments, i.e. for each
bit, if it is 1 in fx1, the corresponding bit in fx2 becomes
the value of the corresponding bit in the result, and if it is
0, the corresponding bit in fx3 becomes the corresponding
bit in the value of the result. This is the fixnum result of
the following computation:

(fxior (fxand fx1 fx2)
(fxand (fxnot fx1) fx3))

(fxbit-count fx) procedure

If fx is non-negative, this procedure returns the number
of 1 bits in the two’s complement representation of fx .
Otherwise it returns the result of the following computa-
tion:

(fxnot (fxbit-count (fxnot fx)))

(fxlength fx) procedure

Returns the number of bits needed to represent fx if it
is positive, and the number of bits needed to represent
(fxnot fx) if it is negative, which is the fixnum result of
the following computation:

(do ((result 0 (+ result 1))

(bits (if (fxnegative? fx)
(fxnot fx)
fx)

(fxarithmetic-shift-right bits 1)))

((fxzero? bits)

result))

(fxfirst-bit-set fx) procedure

Returns the index of the least significant 1 bit in the two’s
complement representation of fx . If fx is 0, then −1 is
returned.

(fxfirst-bit-set 0) =⇒ -1

(fxfirst-bit-set 1) =⇒ 0

(fxfirst-bit-set -4) =⇒ 2

(fxbit-set? fx1 fx2) procedure

Fx2 must be non-negative. The fxbit-set? procedure re-
turns #t if the fx2th bit is 1 in the two’s complement rep-
resentation of fx1, and #f otherwise. This is the result of
the following computation:

(if (fx>=? fx2 (fx- (fixnum-width) 1))

(fxnegative? fx1)
(not

(fxzero?

(fxand fx1
(fxarithmetic-shift-left 1 fx2)))))

(fxcopy-bit fx1 fx2 fx3) procedure

Fx2 must be non-negative and less than w − 1. Fx3 must
be 0 or 1. The fxcopy-bit procedure returns the result of
replacing the fx2th bit of fx1 by fx3, which is the result of
the following computation:

(let* ((mask (fxarithmetic-shift-left 1 fx2)))
(fxif mask

(fxarithmetic-shift-left fx3 fx2)
fx1))

(fxbit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative and less than w.
Moreover, fx2 must be less than or equal to fx3. The
fxbit-field procedure returns the number represented by
the bits at the positions from fx2 (inclusive) to fx3 (exclu-
sive), which is the fixnum result of the following computa-
tion:

(let* ((mask (fxnot

(fxarithmetic-shift-left -1 fx3))))
(fxarithmetic-shift-right (fxand fx1 mask)

fx2))

(fxcopy-bit-field fx1 fx2 fx3 fx4) procedure

Fx2 and fx3 must be non-negative and less than w.
Moreover, fx2 must be less than or equal to fx3. The
fxcopy-bit-field procedure returns the result of replac-
ing in fx1 the bits at positions from fx2 (inclusive) to fx3
(exclusive) by the bits in fx4 from position 0 (inclusive) to
position fx3 − fx2 (exclusive), which is the fixnum result of
the following computation:
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(let* ((to fx1)
(start fx2)
(end fx3)
(from fx4)
(mask1 (fxarithmetic-shift-left -1 start))

(mask2 (fxnot

(fxarithmetic-shift-left -1 end)))

(mask (fxand mask1 mask2))

(mask3 (fxnot (fxarithmetic-shift-left

-1 (- end start)))))

(fxif mask

(fxarithmetic-shift-left (fxand from mask3)

start)

to))

(fxcopy-bit-field #b0000001 2 5 #b1111000)

=⇒ 1

(fxcopy-bit-field #b0000001 2 5 #b0001111)

=⇒ 29

(fxcopy-bit-field #b0001111 2 5 #b0001111)

=⇒ 31

(fxarithmetic-shift fx1 fx2) procedure

The absolute value of fx2 must be less than w. If

(floor (* fx1 (expt 2 fx2)))

is a fixnum, then that fixnum is returned. Other-
wise an exception with condition type &implementation-

restriction is raised.

(fxarithmetic-shift-left fx1 fx2) procedure
(fxarithmetic-shift-right fx1 fx2) procedure

Fx2 must be non-negative, and less than w. The
fxarithmetic-shift-left procedure behaves the same as
fxarithmetic-shift, and (fxarithmetic-shift-right

fx1 fx2) behaves the same as (fxarithmetic-shift fx1
(fx- fx2)).

(fxrotate-bit-field fx1 fx2 fx3 fx4) procedure

Fx2, fx3, and fx4 must be non-negative and less than w.
Fx2 must be less than or equal to fx3. Fx4 must be less
than or equal to the difference between fx3 and fx2. The
fxrotate-bit-field procedure returns the result of cycli-
cally permuting in fx1 the bits at positions from fx2 (inclu-
sive) to fx3 (exclusive) by fx4 bits towards the more sig-
nificant bits, which is the result of the following computa-
tion:

(let* ((n fx1)
(start fx2)
(end fx3)
(count fx4)
(width (fx- end start)))

(fxcopy-bit-field n start end

(fxior

(fxarithmetic-shift-left

(fxbit-field n start (fx- end count))

count)

(fxarithmetic-shift-right

(fxbit-field n start end)

(fx- width count)))))

(fxreverse-bit-field fx1 fx2 fx3) procedure

Fx2 and fx3 must be non-negative and less than w.
Moreover, fx2 must be less than or equal to fx3. The
fxreverse-bit-field procedure returns the fixnum ob-
tained from fx1 by reversing the order of the bits at posi-
tions from fx2 (inclusive) to fx3 (exclusive).

(fxreverse-bit-field #b1010010 1 4)

=⇒ 88 ; #b1011000

11.3. Flonums

This section describes the (rnrs arithmetic flonums

(6)) library.

This section uses fl , fl1, fl2, etc., as parameter names for
arguments that must be flonums, and ifl as a name for ar-
guments that must be integer-valued flonums, i.e., flonums
for which the integer-valued? predicate returns true.

(flonum? obj) procedure

Returns #t if obj is a flonum, #f otherwise.

(real->flonum x) procedure

Returns the best flonum representation of x .

The value returned is a flonum that is numerically closest
to the argument.

Note: If flonums are represented in binary floating point, then

implementations should break ties by preferring the floating-

point representation whose least significant bit is zero.

(fl=? fl1 fl2 fl3 . . . ) procedure
(fl<? fl1 fl2 fl3 . . . ) procedure
(fl<=? fl1 fl2 fl3 . . . ) procedure
(fl>? fl1 fl2 fl3 . . . ) procedure
(fl>=? fl1 fl2 fl3 . . . ) procedure

These procedures return #t if their arguments are (re-
spectively): equal, monotonically increasing, monotoni-
cally nondecreasing, monotonically decreasing, or mono-
tonically nonincreasing, #f otherwise. These predicates
must be transitive.

(fl=? +inf.0 +inf.0) =⇒ #t

(fl=? -inf.0 +inf.0) =⇒ #f

(fl=? -inf.0 -inf.0) =⇒ #t

(fl=? 0.0 -0.0) =⇒ #t

(fl<? 0.0 -0.0) =⇒ #f

(fl=? +nan.0 fl) =⇒ #f

(fl<? +nan.0 fl) =⇒ #f
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(flinteger? fl) procedure
(flzero? fl) procedure
(flpositive? fl) procedure
(flnegative? fl) procedure
(flodd? ifl) procedure
(fleven? ifl) procedure
(flfinite? fl) procedure
(flinfinite? fl) procedure
(flnan? fl) procedure

These numerical predicates test a flonum for a particular
property, returning #t or #f. The flinteger? procedure
tests whether the number object is an integer, flzero?

tests whether it is fl=? to zero, flpositive? tests whether
it is greater than zero, flnegative? tests whether it is less
than zero, flodd? tests whether it is odd, fleven? tests
whether it is even, flfinite? tests whether it is not an
infinity and not a NaN, flinfinite? tests whether it is
an infinity, and flnan? tests whether it is a NaN.

(flnegative? -0.0) =⇒ #f

(flfinite? +inf.0) =⇒ #f

(flfinite? 5.0) =⇒ #t

(flinfinite? 5.0) =⇒ #f

(flinfinite? +inf.0) =⇒ #t

Note: (flnegative? -0.0) must return #f, else it would lose

the correspondence with (fl<? -0.0 0.0), which is #f accord-

ing to IEEE 754 [7].

(flmax fl1 fl2 . . . ) procedure
(flmin fl1 fl2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments. They always return a NaN when one or more
of the arguments is a NaN.

(fl+ fl1 . . . ) procedure
(fl* fl1 . . . ) procedure

These procedures return the flonum sum or product of
their flonum arguments. In general, they should return
the flonum that best approximates the mathematical sum
or product. (For implementations that represent flonums
using IEEE binary floating point, the meaning of “best” is
defined by the IEEE standards.)

(fl+ +inf.0 -inf.0) =⇒ +nan.0

(fl+ +nan.0 fl) =⇒ +nan.0

(fl* +nan.0 fl) =⇒ +nan.0

(fl- fl1 fl2 . . . ) procedure
(fl- fl) procedure
(fl/ fl1 fl2 . . . ) procedure
(fl/ fl) procedure

With two or more arguments, these procedures return the
flonum difference or quotient of their flonum arguments,

associating to the left. With one argument, however, they
return the additive or multiplicative flonum inverse of their
argument. In general, they should return the flonum that
best approximates the mathematical difference or quotient.
(For implementations that represent flonums using IEEE
binary floating point, the meaning of “best” is reasonably
well-defined by the IEEE standards.)

(fl- +inf.0 +inf.0) =⇒ +nan.0

For undefined quotients, fl/ behaves as specified by the
IEEE standards:

(fl/ 1.0 0.0) =⇒ +inf.0

(fl/ -1.0 0.0) =⇒ -inf.0

(fl/ 0.0 0.0) =⇒ +nan.0

(flabs fl) procedure

Returns the absolute value of fl .

(fldiv-and-mod fl1 fl2) procedure
(fldiv fl1 fl2) procedure
(flmod fl1 fl2) procedure
(fldiv0-and-mod0 fl1 fl2) procedure
(fldiv0 fl1 fl2) procedure
(flmod0 fl1 fl2) procedure

These procedures implement number-theoretic integer di-
vision and return the results of the corresponding math-
ematical operations specified in report section 11.7.3.
In the cases where the mathematical requirements in
section 11.7.3annot be satisfied by any number ob-
ject, either an exception is raised with condition type
&implementation-restriction, or unspecified flonums
(one for fldiv flmod, fldiv0 and flmod0, two for
fldiv-and-mod and fldiv0-and-mod0) are returned.

(fldiv fl1 fl2) =⇒ fl1 div fl2

(flmod fl1 fl2) =⇒ fl1 mod fl2

(fldiv-and-mod fl1 fl2)

=⇒ fl1 div fl2, fl1 mod fl2

; two return values
(fldiv0 fl1 fl2) =⇒ fl1 div0 fl2

(flmod0 fl1 fl2) =⇒ fl1 mod0 fl2

(fldiv0-and-mod0 fl1 fl2)

=⇒ fl1 div0 fl2, fl1 mod0 fl2

; two return values

(flnumerator fl) procedure
(fldenominator fl) procedure

These procedures return the numerator or denominator of
fl as a flonum; the result is computed as if fl was repre-
sented as a fraction in lowest terms. The denominator is
always positive. The denominator of 0.0 is defined to be
1.0.
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(flnumerator +inf.0) =⇒ +inf.0

(flnumerator -inf.0) =⇒ -inf.0

(fldenominator +inf.0) =⇒ 1.0

(fldenominator -inf.0) =⇒ 1.0

(flnumerator 0.75) =⇒ 3.0 ; probably
(fldenominator 0.75) =⇒ 4.0 ; probably

Implementations should implement following behavior:

(flnumerator -0.0) =⇒ -0.0

(flfloor fl) procedure
(flceiling fl) procedure
(fltruncate fl) procedure
(flround fl) procedure

These procedures return integral flonums for flonum argu-
ments that are not infinities or NaNs. For such arguments,
flfloor returns the largest integral flonum not larger than
fl . The flceiling procedure returns the smallest integral
flonum not smaller than fl . The fltruncate procedure re-
turns the integral flonum closest to fl whose absolute value
is not larger than the absolute value of fl . The flround

procedure returns the closest integral flonum to fl , round-
ing to even when fl represents a number halfway between
two integers.

Although infinities and NaNs are not integer objects, these
procedures return an infinity when given an infinity as an
argument, and a NaN when given a NaN:

(flfloor +inf.0) =⇒ +inf.0

(flceiling -inf.0) =⇒ -inf.0

(fltruncate +nan.0) =⇒ +nan.0

(flexp fl) procedure
(fllog fl) procedure
(fllog fl1 fl2) procedure
(flsin fl) procedure
(flcos fl) procedure
(fltan fl) procedure
(flasin fl) procedure
(flacos fl) procedure
(flatan fl) procedure
(flatan fl1 fl2) procedure

These procedures compute the usual transcendental func-
tions. The flexp procedure computes the base-e expo-
nential of fl . The fllog procedure with a single argument
computes the natural logarithm of fl (not the base ten loga-
rithm); (fllog fl1 fl2) computes the base-fl2 logarithm of
fl1. The flasin, flacos, and flatan procedures compute
arcsine, arccosine, and arctangent, respectively. (flatan

fl1 fl2) computes the arc tangent of fl1/fl2.

See report section 11.7.3 for the underlying mathematical
operations. In the event that these operations do not yield
a real result for the given arguments, the result may be a
NaN, or may be some unspecified flonum.

Implementations that use IEEE binary floating-point arith-
metic should follow the relevant standards for these proce-
dures.

(flexp +inf.0) =⇒ +inf.0

(flexp -inf.0) =⇒ 0.0

(fllog +inf.0) =⇒ +inf.0

(fllog 0.0) =⇒ -inf.0

(fllog -0.0) =⇒ unspecified
; if -0.0 is distinguished

(fllog -inf.0) =⇒ +nan.0

(flatan -inf.0)

=⇒ -1.5707963267948965

; approximately
(flatan +inf.0)

=⇒ 1.5707963267948965

; approximately

(flsqrt fl) procedure

Returns the principal square root of fl . For −0.0, flsqrt
should return −0.0; for other negative arguments, the re-
sult may be a NaN or some unspecified flonum.

(flsqrt +inf.0) =⇒ +inf.0

(flsqrt -0.0) =⇒ -0.0

(flexpt fl1 fl2) procedure

Either fl1 should be non-negative, or, if fl1 is negative, fl2

should be an integer object. The flexpt procedure returns
fl1 raised to the power fl2. If fl1 is negative and fl2 is not an
integer object, the result may be a NaN, or may be some
unspecified flonum. If fl1 and fl2 are both zero, the result
is 1.0. If fl1 is zero and fl2 is positive, the result is zero. If
fl1 is zero and fl2 is negative, the result may be a NaN, or
may be some unspecified flonum.

&no-infinities condition type
(make-no-infinities-violation) procedure
(no-infinities-violation? obj) procedure
&no-nans condition type
(make-no-nans-violation) procedure
(no-nans-violation? obj) procedure

These condition types could be defined by the following
code:

(define-condition-type &no-infinities

&implementation-restriction

make-no-infinities-violation

no-infinities-violation?)

(define-condition-type &no-nans

&implementation-restriction

make-no-nans-violation no-nans-violation?)
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These types describe that a program has executed an arith-
metic operations that is specified to return an infinity or
a NaN, respectively, on a Scheme implementation that is
not able to represent the infinity or NaN. (See report sec-
tion 11.7.2.)

(fixnum->flonum fx) procedure

Returns a flonum that is numerically closest to fx .

Note: The result of this procedure may not be numerically

equal to fx , because the fixnum precision may be greater than

the flonum precision.

11.4. Exact bitwise arithmetic

This section describes the (rnrs arithmetic bitwise

(6)) library. The exact bitwise arithmetic provides generic
operations on exact integer objects. This section uses ei ,
ei1, ei2, etc., as parameter names that must be exact inte-
ger objects.

(bitwise-not ei) procedure

Returns the exact integer object whose two’s complement
representation is the one’s complement of the two’s com-
plement representation of ei .

(bitwise-and ei1 . . . ) procedure
(bitwise-ior ei1 . . . ) procedure
(bitwise-xor ei1 . . . ) procedure

These procedures return the exact integer object that is
the bit-wise “and”, “inclusive or”, or “exclusive or” of the
two’s complement representations of their arguments. If
they are passed only one argument, they return that ar-
gument. If they are passed no arguments, they return the
integer object (either −1 or 0) that acts as identity for the
operation.

(bitwise-if ei1 ei2 ei3) procedure

Returns the exact integer object that is the bit-wise “if”
of the two’s complement representations of its arguments,
i.e. for each bit, if it is 1 in ei1, the corresponding bit in ei2
becomes the value of the corresponding bit in the result,
and if it is 0, the corresponding bit in ei3 becomes the
corresponding bit in the value of the result. This is the
result of the following computation:

(bitwise-ior (bitwise-and ei1 ei2)
(bitwise-and (bitwise-not ei1) ei3))

(bitwise-bit-count ei) procedure

If ei is non-negative, this procedure returns the number
of 1 bits in the two’s complement representation of ei .
Otherwise it returns the result of the following computa-
tion:

(bitwise-not (bitwise-bit-count (bitwise-not ei)))

(bitwise-length ei) procedure

Returns the number of bits needed to represent ei if it
is positive, and the number of bits needed to represent
(bitwise-not ei) if it is negative, which is the exact in-
teger object that is the result of the following computa-
tion:

(do ((result 0 (+ result 1))

(bits (if (negative? ei)
(bitwise-not ei)
ei)

(bitwise-arithmetic-shift bits -1)))

((zero? bits)

result))

(bitwise-first-bit-set ei) procedure

Returns the index of the least significant 1 bit in the two’s
complement representation of ei . If ei is 0, then −1 is
returned.

(bitwise-first-bit-set 0) =⇒ -1

(bitwise-first-bit-set 1) =⇒ 0

(bitwise-first-bit-set -4) =⇒ 2

(bitwise-bit-set? ei1 ei2) procedure

Ei2 must be non-negative. The bitwise-bit-set? proce-
dure returns #t if the ei2th bit is 1 in the two’s complement
representation of ei1, and #f otherwise. This is the result
of the following computation:

(not (zero?

(bitwise-and

(bitwise-arithmetic-shift-left 1 ei2)
ei1)))

(bitwise-copy-bit ei1 ei2 ei3) procedure

Ei2 must be non-negative, and ei3 must be either 0 or 1.
The bitwise-copy-bit procedure returns the result of re-
placing the ei2th bit of ei1 by ei3, which is the result of the
following computation:

(let* ((mask (bitwise-arithmetic-shift-left 1 ei2)))
(bitwise-if mask

(bitwise-arithmetic-shift-left ei3 ei2)
ei1))

(bitwise-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less
than or equal to ei3. The bitwise-bit-field procedure
returns the number represented by the bits at the positions
from ei2 (inclusive) to ei3 (exclusive), which is the result
of the following computation:
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(let ((mask

(bitwise-not

(bitwise-arithmetic-shift-left -1 ei3))))
(bitwise-arithmetic-shift-right

(bitwise-and ei1 mask)

ei2))

(bitwise-copy-bit-field ei1 ei2 ei3 ei4) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less than
or equal to ei3. The bitwise-copy-bit-field procedure
returns the result of replacing in ei1 the bits at positions
from ei2 (inclusive) to ei3 (exclusive) by the bits in ei4 from
position 0 (inclusive) to position ei3−ei2 (exclusive), which
is the result of the following computation:

(let* ((to ei1)
(start ei2)
(end ei3)
(from ei4)
(mask1

(bitwise-arithmetic-shift-left -1 start))

(mask2

(bitwise-not

(bitwise-arithmetic-shift-left -1 end)))

(mask (bitwise-and mask1 mask2)))

(bitwise-if mask

(bitwise-arithmetic-shift-left from

start)

to))

(bitwise-arithmetic-shift ei1 ei2) procedure

Returns the result of the following computation:

(floor (* ei1 (expt 2 ei2)))

Examples:

(bitwise-arithmetic-shift -6 -1)

=⇒ -3

(bitwise-arithmetic-shift -5 -1)

=⇒ -3

(bitwise-arithmetic-shift -4 -1)

=⇒ -2

(bitwise-arithmetic-shift -3 -1)

=⇒ -2

(bitwise-arithmetic-shift -2 -1)

=⇒ -1

(bitwise-arithmetic-shift -1 -1)

=⇒ -1

(bitwise-arithmetic-shift-left ei1 ei2) procedure
(bitwise-arithmetic-shift-right ei1 ei2) procedure

Ei2 must be non-negative. The bitwise-arithmetic-
shift-left procedure returns the same result as
bitwise-arithmetic-shift, and

(bitwise-arithmetic-shift-right ei1 ei2)

returns the same result as

(bitwise-arithmetic-shift ei1 (- ei2)).

(bitwise-rotate-bit-field ei1 ei2 ei3 ei4) procedure

Ei2, ei3, ei4 must be non-negative, ei2 must be less than or
equal to ei3. The bitwise-rotate-bit-field procedure
returns the result of cyclically permuting in ei1 the bits at
positions from ei2 (inclusive) to ei3 (exclusive) by ei4 bits
towards the more significant bits, which is the result of the
following computation:

(let* ((n ei1)
(start ei2)
(end ei3)
(count ei4)
(width (- end start)))

(if (positive? width)

(let* ((count (mod count width))

(field0

(bitwise-bit-field n start end))

(field1 (bitwise-arithmetic-shift-left

field0 count))

(field2 (bitwise-arithmetic-shift-right

field0

(- width count)))

(field (bitwise-ior field1 field2)))

(bitwise-copy-bit-field n start end field))

n))

(bitwise-reverse-bit-field ei1 ei2 ei3) procedure

Ei2 and ei3 must be non-negative, and ei2 must be less
than or equal to ei3. The bitwise-reverse-bit-field
procedure returns the result obtained from ei1 by reversing
the order of the bits at positions from ei2 (inclusive) to ei3
(exclusive).

(bitwise-reverse-bit-field #b1010010 1 4)

=⇒ 88 ; #b1011000

12. syntax-case

The (rnrs syntax-case (6)) library provides support
for writing low-level macros in a high-level style, with au-
tomatic syntax checking, input destructuring, output re-
structuring, maintenance of lexical scoping and referential
transparency (hygiene), and support for controlled identi-
fier capture.

12.1. Hygiene

Barendregt’s hygiene condition [1] for the lambda calculus
is an informal notion that requires the free variables of an
expression N that is to be substituted into another expres-
sion M not to be captured by bindings in M when such
capture is not intended. Kohlbecker, et al [9] propose a
corresponding hygiene condition for macro expansion that
applies in all situations where capturing is not explicit:
“Generated identifiers that become binding instances in
the completely expanded program must only bind vari-
ables that are generated at the same transcription step”.
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In the terminology of this document, the “generated iden-
tifiers” are those introduced by a transformer rather than
those present in the form passed to the transformer, and a
“macro transcription step” corresponds to a single call by
the expander to a transformer. Also, the hygiene condition
applies to all introduced bindings rather than to introduced
variable bindings alone.

This leaves open what happens to an introduced identifier
that appears outside the scope of a binding introduced by
the same call. Such an identifier refers to the lexical bind-
ing in effect where it appears (within a syntax 〈template〉;
see section 12.4) inside the transformer body or one of the
helpers it calls. This is essentially the referential trans-
parency property described by Clinger and Rees [3]. Thus,
the hygiene condition can be restated as follows:

A binding for an identifier introduced into the
output of a transformer call from the expander
must capture only references to the identifier in-
troduced into the output of the same transformer
call. A reference to an identifier introduced into
the output of a transformer refers to the closest
enclosing binding for the introduced identifier or,
if it appears outside of any enclosing binding for
the introduced identifier, the closest enclosing lex-
ical binding where the identifier appears (within
a syntax 〈template〉) inside the transformer body
or one of the helpers it calls.

Explicit captures are handled via datum->syntax; see sec-
tion 12.6.

Operationally, the expander can maintain hygiene with the
help of marks and substitutions. Marks are applied selec-
tively by the expander to the output of each transformer
it invokes, and substitutions are applied to the portions
of each binding form that are supposed to be within the
scope of the bound identifiers. Marks are used to distin-
guish like-named identifiers that are introduced at different
times (either present in the source or introduced into the
output of a particular transformer call), and substitutions
are used to map identifiers to their expand-time values.

Each time the expander encounters a macro use, it ap-
plies an antimark to the input form, invokes the associ-
ated transformer, then applies a fresh mark to the output.
Marks and antimarks cancel, so the portions of the input
that appear in the output are effectively left unmarked,
while the portions of the output that are introduced are
marked with the fresh mark.

Each time the expander encounters a binding form it cre-
ates a set of substitutions, each mapping one of the (pos-
sibly marked) bound identifiers to information about the
binding. (For a lambda expression, the expander might
map each bound identifier to a representation of the for-
mal parameter in the output of the expander. For a

let-syntax form, the expander might map each bound
identifier to the associated transformer.) These substitu-
tions are applied to the portions of the input form in which
the binding is supposed to be visible.

Marks and substitutions together form a wrap that is lay-
ered on the form being processed by the expander and
pushed down toward the leaves as necessary. A wrapped
form is referred to as a wrapped syntax object. Ultimately,
the wrap may rest on a leaf that represents an identifier,
in which case the wrapped syntax object is also referred to
as an identifier. An identifier contains a name along with
the wrap. (Names are typically represented by symbols.)

When a substitution is created to map an identifier to an
expand-time value, the substitution records the name of
the identifier and the set of marks that have been ap-
plied to that identifier, along with the associated expand-
time value. The expander resolves identifier references by
looking for the latest matching substitution to be applied
to the identifier, i.e., the outermost substitution in the
wrap whose name and marks match the name and marks
recorded in the substitution. The name matches if it is the
same name (if using symbols, then by eq?), and the marks
match if the marks recorded with the substitution are the
same as those that appear below the substitution in the
wrap, i.e., those that were applied before the substitution.
Marks applied after a substitution, i.e., appear over the
substitution in the wrap, are not relevant and are ignored.

An algebra that defines how marks and substitutions work
more precisely is given in section 2.4 of Oscar Waddell’s
PhD thesis [13].1

12.2. Syntax objects

A syntax object is a representation of a Scheme form that
contains contextual information about the form in addi-
tion to its structure. This contextual information is used
by the expander to maintain lexical scoping and may also
be used by an implementation to maintain source-object
correlation [6].

A syntax object may be wrapped, as described in sec-
tion 12.1. It may also be unwrapped, fully or partially, i.e.,
consist of list and vector structure with wrapped syntax ob-
jects or nonsymbol values at the leaves. More formally, a
syntax object is:

• a pair of syntax objects,

• a vector of syntax objects,

1Note, however, that Waddell’s thesis describes slightly different
semantics for bound-identifier=?—it specifies that for two identi-
fiers to be equal in the sense of bound-identifier=?, they must have
the same marks and be equal in the sense of free-identifier=?,
whereas this report requires instead that they must have the same
marks and have the same name.
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• a nonpair, nonvector, nonsymbol value, or

• a wrapped syntax object.

The distinction between the terms “syntax object” and
“wrapped syntax object” is important. For example, when
invoked by the expander, a transformer (section 12.3) must
accept a wrapped syntax object but may return any syntax
object, including an unwrapped syntax object.

Syntax objects representing identifiers are always wrapped
and are distinct from other types of values. Wrapped syn-
tax objects that are not identifiers may or may not be
distinct from other types of values.

12.3. Transformers

In define-syntax (report section 11.2.2), let-syntax,
and letrec-syntax forms (report section 11.18), a bind-
ing for a syntactic keyword is an expression that evaluates
to a transformer.

A transformer is a transformation procedure or a variable
transformer. A transformation procedure is a procedure
that must accept one argument, a wrapped syntax object
(section 12.2) representing the input, and return a syntax
object (section 12.2) representing the output. The trans-
former is called by the expander whenever a reference to a
keyword with which it has been associated is found. If the
keyword appears in the car of a list-structured input form,
the transformer receives the entire list-structured form, and
its output replaces the entire form. Except with variable
transformers (see below), if the keyword is found in any
other definition or expression context, the transformer re-
ceives a wrapped syntax object representing just the key-
word reference, and its output replaces just the reference.
Except with variable transformers, an exception with con-
dition type &syntax is raised if the keyword appears on the
left-hand side of a set! expression.

(make-variable-transformer proc) procedure

Proc should accept one argument, a wrapped syntax ob-
ject, and return a syntax object.

The make-variable-transformer procedure creates a
variable transformer. A variable transformer is like an or-
dinary transformer except that, if a keyword associated
with a variable transformer appears on the left-hand side
of a set! expression, an exception is not raised. Instead,
proc is called with a wrapped syntax object representing
the entire set! expression as its argument, and its return
value replaces the entire set! expression.

Implementation responsibilities: The implementation must
check the restrictions on proc only to the extent performed
by applying it as described. An implementation may check
whether proc is an appropriate argument before applying
it.

12.4. Parsing input and producing output

Transformers can destructure their input with
syntax-case and rebuild their output with syntax.

(syntax-case 〈expression〉 (〈literal〉 . . . ) syntax
〈syntax-case clause〉 . . . )

auxiliary syntax
... auxiliary syntax

Syntax: Each 〈literal〉 must be an identifier. Each
〈syntax-case clause〉 must take one of the following two
forms.

(〈pattern〉 〈output expression〉)
(〈pattern〉 〈fender〉 〈output expression〉)

〈Fender〉 and 〈output expression〉 must be 〈expression〉s.
A 〈pattern〉 is an identifier, constant, or one of the follow-
ing.

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 ... . 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ... . 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

An 〈ellipsis〉 is the identifier “...” (three periods).

An identifier appearing within a 〈pattern〉 may be an un-
derscore ( ), a literal identifier listed in the list of literals
(〈literal〉 . . . ), or an ellipsis ( ... ). All other identifiers
appearing within a 〈pattern〉 are pattern variables. It is
a syntax violation if an ellipsis or underscore appears in
(〈literal〉 . . . ).

and ... are the same as in the (rnrs base (6)) library.

Pattern variables match arbitrary input subforms and are
used to refer to elements of the input. It is a syntax viola-
tion if the same pattern variable appears more than once
in a 〈pattern〉.
Underscores also match arbitrary input subforms but are
not pattern variables and so cannot be used to refer to those
elements. Multiple underscores may appear in a 〈pattern〉.
A literal identifier matches an input subform if and only
if the input subform is an identifier and either both its
occurrence in the input expression and its occurrence in
the list of literals have the same lexical binding, or the two
identifiers have the same name and both have no lexical
binding.

A subpattern followed by an ellipsis can match zero or more
elements of the input.

More formally, an input form F matches a pattern P if and
only if one of the following holds:

• P is an underscore ( ).
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• P is a pattern variable.

• P is a literal identifier and F is an equivalent identifier
in the sense of free-identifier=? (section 12.5).

• P is of the form (P1 . . . Pn) and F is a list of n
elements that match P1 through Pn.

• P is of the form (P1 . . . Pn . Px) and F is a list
or improper list of n or more elements whose first
n elements match P1 through Pn and whose nth cdr
matches Px.

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . .
Pn), where 〈ellipsis〉 is the identifier ... and F is a
proper list of n elements whose first k elements match
P1 through Pk, whose next m−k elements each match
Pe, and whose remaining n−m elements match Pm+1

through Pn.

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . .
Pn . Px), where 〈ellipsis〉 is the identifier ... and
F is a list or improper list of n elements whose first
k elements match P1 through Pk, whose next m − k
elements each match Pe, whose next n −m elements
match Pm+1 through Pn, and whose nth and final cdr
matches Px.

• P is of the form #(P1 . . . Pn) and F is a vector of n
elements that match P1 through Pn.

• P is of the form #(P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . .
Pn), where 〈ellipsis〉 is the identifier ... and F is a
vector of n or more elements whose first k elements
match P1 through Pk, whose next m−k elements each
match Pe, and whose remaining n−m elements match
Pm+1 through Pn.

• P is a pattern datum (any nonlist, nonvector, non-
symbol datum) and F is equal to P in the sense of the
equal? procedure.

Semantics: A syntax-case expression first evaluates
〈expression〉. It then attempts to match the 〈pattern〉 from
the first 〈syntax-case clause〉 against the resulting value,
which is unwrapped as necessary to perform the match. If
the pattern matches the value and no 〈fender〉 is present,
〈output expression〉 is evaluated and its value returned as
the value of the syntax-case expression. If the pattern
does not match the value, syntax-case tries the second
〈syntax-case clause〉, then the third, and so on. It is a
syntax violation if the value does not match any of the
patterns.

If the optional 〈fender〉 is present, it serves as an additional
constraint on acceptance of a clause. If the 〈pattern〉 of
a given 〈syntax-case clause〉 matches the input value, the
corresponding 〈fender〉 is evaluated. If 〈fender〉 evaluates

to a true value, the clause is accepted; otherwise, the clause
is rejected as if the pattern had failed to match the value.
Fenders are logically a part of the matching process, i.e.,
they specify additional matching constraints beyond the
basic structure of the input.

Pattern variables contained within a clause’s 〈pattern〉 are
bound to the corresponding pieces of the input value within
the clause’s 〈fender〉 (if present) and 〈output expression〉.
Pattern variables can be referenced only within syntax ex-
pressions (see below). Pattern variables occupy the same
name space as program variables and keywords.

If the syntax-case form is in tail context, the
〈output expression〉s are also in tail position.

(syntax 〈template〉) syntax

Note: #’〈template〉 is equivalent to (syntax 〈template〉).

A syntax expression is similar to a quote expression except
that (1) the values of pattern variables appearing within
〈template〉 are inserted into 〈template〉, (2) contextual in-
formation associated both with the input and with the tem-
plate is retained in the output to support lexical scoping,
and (3) the value of a syntax expression is a syntax object.

A 〈template〉 is a pattern variable, an identifier that is not
a pattern variable, a pattern datum, or one of the following.

(〈subtemplate〉 ...)

(〈subtemplate〉 ... . 〈template〉)
#(〈subtemplate〉 ...)

A 〈subtemplate〉 is a 〈template〉 followed by zero or more
ellipses.

The value of a syntax form is a copy of 〈template〉 in which
the pattern variables appearing within the template are re-
placed with the input subforms to which they are bound.
Pattern data and identifiers that are not pattern variables
or ellipses are copied directly into the output. A subtem-
plate followed by an ellipsis expands into zero or more oc-
currences of the subtemplate. Pattern variables that occur
in subpatterns followed by one or more ellipses may oc-
cur only in subtemplates that are followed by (at least) as
many ellipses. These pattern variables are replaced in the
output by the input subforms to which they are bound,
distributed as specified. If a pattern variable is followed
by more ellipses in the subtemplate than in the associ-
ated subpattern, the input form is replicated as necessary.
The subtemplate must contain at least one pattern vari-
able from a subpattern followed by an ellipsis, and for at
least one such pattern variable, the subtemplate must be
followed by exactly as many ellipses as the subpattern in
which the pattern variable appears. (Otherwise, the ex-
pander would not be able to determine how many times
the subform should be repeated in the output.) It is a syn-
tax violation if the constraints of this paragraph are not
met.
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A template of the form (〈ellipsis〉 〈template〉) is identical
to 〈template〉, except that ellipses within the template have
no special meaning. That is, any ellipses contained within
〈template〉 are treated as ordinary identifiers. In particu-
lar, the template (... ...) produces a single ellipsis. This
allows macro uses to expand into forms containing ellipses.

The output produced by syntax is wrapped or unwrapped
according to the following rules.

• the copy of (〈t1〉 . 〈t2〉) is a pair if 〈t1〉 or 〈t2〉 contain
any pattern variables,

• the copy of (〈t〉 〈ellipsis〉) is a list if 〈t〉 contains any
pattern variables,

• the copy of #(〈t1〉 ... 〈tn〉) is a vector if any of
〈t1〉, . . . , 〈tn〉 contain any pattern variables, and

• the copy of any portion of 〈t〉 not containing any pat-
tern variables is a wrapped syntax object.

The input subforms inserted in place of the pattern vari-
ables are wrapped if and only if the corresponding input
subforms are wrapped.

The following definitions of or illustrate syntax-case and
syntax. The second is equivalent to the first but uses the
#’ prefix instead of the full syntax form.

(define-syntax or

(lambda (x)

(syntax-case x ()

[( ) (syntax #f)]

[( e) (syntax e)]

[( e1 e2 e3 ...)

(syntax (let ([t e1])

(if t t (or e2 e3 ...))))])))

(define-syntax or

(lambda (x)

(syntax-case x ()

[( ) #’#f]

[( e) #’e]

[( e1 e2 e3 ...)

#’(let ([t e1])

(if t t (or e2 e3 ...)))])))

The examples below define identifier macros, macro uses
supporting keyword references that do not necessarily ap-
pear in the first position of a list-structured form. The sec-
ond example uses make-variable-transformer to handle
the case where the keyword appears on the left-hand side
of a set! expression.

(define p (cons 4 5))

(define-syntax p.car

(lambda (x)

(syntax-case x ()

[( . rest) #’((car p) . rest)]

[ #’(car p)])))

p.car =⇒ 4

(set! p.car 15) =⇒ &syntax exception

(define p (cons 4 5))

(define-syntax p.car

(make-variable-transformer

(lambda (x)

(syntax-case x (set!)

[(set! e) #’(set-car! p e)]

[( . rest) #’((car p) . rest)]

[ #’(car p)]))))

(set! p.car 15)

p.car =⇒ 15

p =⇒ (15 . 5)

12.5. Identifier predicates

(identifier? obj) procedure

Returns #t if obj is an identifier, i.e., a syntax object rep-
resenting an identifier, and #f otherwise.

The identifier? procedure is often used within a fender
to verify that certain subforms of an input form are iden-
tifiers, as in the definition of rec, which creates self-
contained recursive objects, below.

(define-syntax rec

(lambda (x)

(syntax-case x ()

[( x e)

(identifier? #’x)

#’(letrec ([x e]) x)])))

(map (rec fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

’(1 2 3 4 5))

=⇒ (1 2 6 24 120)

(rec 5 (lambda (x) x)) =⇒ &syntax exception

The procedures bound-identifier=? and free-

identifier=? each take two identifier arguments
and return #t if their arguments are equivalent and #f

otherwise. These predicates are used to compare identifiers
according to their intended use as free references or bound
identifiers in a given context.

(bound-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The procedure bound-

identifier=? returns #t if a binding for one would capture
a reference to the other in the output of the transformer,
assuming that the reference appears within the scope of
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the binding, and #f otherwise. In general, two identi-
fiers are bound-identifier=? only if both are present in
the original program or both are introduced by the same
transformer application (perhaps implicitly—see datum->

syntax). Operationally, two identifiers are considered
equivalent by bound-identifier=? if and only if they have
the same name and same marks (section 12.1).

The bound-identifier=? procedure can be used for de-
tecting duplicate identifiers in a binding construct or for
other preprocessing of a binding construct that requires
detecting instances of the bound identifiers.

(free-identifier=? id1 id2) procedure

Id1 and id2 must be identifiers. The free-identifier=?

procedure returns #t if and only if the two identifiers would
resolve to the same binding if both were to appear in
the output of a transformer outside of any bindings in-
serted by the transformer. (If neither of two like-named
identifiers resolves to a binding, i.e., both are unbound,
they are considered to resolve to the same binding.) Op-
erationally, two identifiers are considered equivalent by
free-identifier=? if and only the topmost matching sub-
stitution for each maps to the same binding (section 12.1)
or the identifiers have the same name and no matching
substitution.

The syntax-case and syntax-rules forms internally use
free-identifier=? to compare identifiers listed in the lit-
erals list against input identifiers.

(let ([fred 17])

(define-syntax a

(lambda (x)

(syntax-case x ()

[( id) #’(b id fred)])))

(define-syntax b

(lambda (x)

(syntax-case x ()

[( id1 id2)

#`(list

#,(free-identifier=? #’id1 #’id2)

#,(bound-identifier=? #’id1 #’id2))])))

(a fred)) =⇒ (#t #f)

The following definition of unnamed let uses
bound-identifier=? to detect duplicate identifiers.

(define-syntax let

(lambda (x)

(define unique-ids?

(lambda (ls)

(or (null? ls)

(and (let notmem?

([x (car ls)] [ls (cdr ls)])

(or (null? ls)

(and (not (bound-identifier=?

x (car ls)))

(notmem? x (cdr ls)))))

(unique-ids? (cdr ls))))))

(syntax-case x ()

[( ((i v) ...) e1 e2 ...)

(unique-ids? #’(i ...))

#’((lambda (i ...) e1 e2 ...) v ...)])))

The argument #’(i ...) to unique-ids? is guaranteed
to be a list by the rules given in the description of syntax
above.

With this definition of let:

(let ([a 3] [a 4]) (+ a a))

=⇒ &syntax exception

However,

(let-syntax

([dolet (lambda (x)

(syntax-case x ()

[( b)

#’(let ([a 3] [b 4]) (+ a b))]))])

(dolet a))

=⇒ 7

since the identifier a introduced by dolet and the
identifier a extracted from the input form are not
bound-identifier=?.

The following definition of case is equivalent to the one
in section 12.4. Rather than including else in the literals
list as before, this version explicitly tests for else using
free-identifier=?.

(define-syntax case

(lambda (x)

(syntax-case x ()

[( e0 [(k ...) e1 e2 ...] ...

[else-key else-e1 else-e2 ...])

(and (identifier? #’else-key)

(free-identifier=? #’else-key #’else))

#’(let ([t e0])

(cond

[(memv t ’(k ...)) e1 e2 ...]

...

[else else-e1 else-e2 ...]))]

[( e0 [(ka ...) e1a e2a ...]

[(kb ...) e1b e2b ...] ...)

#’(let ([t e0])

(cond

[(memv t ’(ka ...)) e1a e2a ...]

[(memv t ’(kb ...)) e1b e2b ...]

...))])))

With either definition of case, else is not recognized as an
auxiliary keyword if an enclosing lexical binding for else

exists. For example,

(let ([else #f])

(case 0 [else (write "oops")]))

=⇒ &syntax exception

since else is bound lexically and is therefore not the same
else that appears in the definition of case.
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12.6. Syntax-object and datum conversions

(syntax->datum syntax-object) procedure

Strips all syntactic information from a syntax object and
returns the corresponding Scheme datum.

Identifiers stripped in this manner are converted to their
symbolic names, which can then be compared with eq?.
Thus, a predicate symbolic-identifier=? might be de-
fined as follows.

(define symbolic-identifier=?

(lambda (x y)

(eq? (syntax->datum x)

(syntax->datum y))))

(datum->syntax template-id datum) procedure

Template-id must be a template identifier and datum
should be a datum value. The datum->syntax procedure
returns a syntax-object representation of datum that con-
tains the same contextual information as template-id , with
the effect that the syntax object behaves as if it were in-
troduced into the code when template-id was introduced.

The datum->syntax procedure allows a transformer to
“bend” lexical scoping rules by creating implicit identi-
fiers that behave as if they were present in the input form,
thus permitting the definition of macros that introduce vis-
ible bindings for or references to identifiers that do not
appear explicitly in the input form. For example, the fol-
lowing defines a loop expression that uses this controlled
form of identifier capture to bind the variable break to
an escape procedure within the loop body. (The derived
with-syntax form is like let but binds pattern variables—
see section 12.8.)

(define-syntax loop

(lambda (x)

(syntax-case x ()

[(k e ...)

(with-syntax

([break (datum->syntax #’k ’break)])

#’(call-with-current-continuation

(lambda (break)

(let f () e ... (f)))))])))

(let ((n 3) (ls ’()))

(loop

(if (= n 0) (break ls))

(set! ls (cons ’a ls))

(set! n (- n 1))))

=⇒ (a a a)

Were loop to be defined as

(define-syntax loop

(lambda (x)

(syntax-case x ()

[( e ...)

#’(call-with-current-continuation

(lambda (break)

(let f () e ... (f))))])))

the variable break would not be visible in e ....

The datum argument datum may also represent an arbi-
trary Scheme form, as demonstrated by the following defi-
nition of include.

(define-syntax include

(lambda (x)

(define read-file

(lambda (fn k)

(let ([p (open-file-input-port fn

(file-options)

(buffer-mode block)

(native-transcoder))])

(let f ([x (get-datum p)])

(if (eof-object? x)

(begin (close-port p) ’())

(cons (datum->syntax k x)

(f (get-datum p))))))))

(syntax-case x ()

[(k filename)

(let ([fn (syntax->datum #’filename)])

(with-syntax ([(exp ...)

(read-file fn #’k)])

#’(begin exp ...)))])))

(include "filename") expands into a begin expres-
sion containing the forms found in the file named by
"filename". For example, if the file flib.ss contains
(define f (lambda (x) (g (* x x)))), and the file
glib.ss contains (define g (lambda (x) (+ x x))),
the expression

(let ()

(include "flib.ss")

(include "glib.ss")

(f 5))

evaluates to 50.

The definition of include uses datum->syntax to convert
the objects read from the file into syntax objects in the
proper lexical context, so that identifier references and
definitions within those expressions are scoped where the
include form appears.

Using datum->syntax, it is even possible to break hygiene
entirely and write macros in the style of old Lisp macros.
The lisp-transformer procedure defined below creates a
transformer that converts its input into a datum, calls the
programmer’s procedure on this datum, and converts the
result back into a syntax object scoped where the original
macro use appeared.
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(define lisp-transformer

(lambda (p)

(lambda (x)

(syntax-case x ()

[(kwd . rest)

(datum->syntax #’kwd

(p (syntax->datum x)))]))))

12.7. Generating lists of temporaries

Transformers can introduce a fixed number of identifiers
into their output simply by naming each identifier. In
some cases, however, the number of identifiers to be in-
troduced depends upon some characteristic of the input
expression. A straightforward definition of letrec, for
example, requires as many temporary identifiers as there
are binding pairs in the input expression. The procedure
generate-temporaries is used to construct lists of tem-
porary identifiers.

(generate-temporaries l) procedure

L must be be a list or syntax object representing a list-
structured form; its contents are not important. The num-
ber of temporaries generated is the number of elements in l .
Each temporary is guaranteed to be unique, i.e., different
from all other identifiers.

A definition of letrec equivalent to the one using
syntax-rules given in report appendix B is shown below.

(define-syntax letrec

(lambda (x)

(syntax-case x ()

(( ((i e) ...) b1 b2 ...)

(with-syntax

(((t ...) (generate-temporaries #’(i ...))))

#’(let ((i <undefined>) ...)

(let ((t e) ...)

(set! i t) ...

(let () b1 b2 ...))))))))

This version uses generate-temporaries instead of recur-
sively defined helper to generate the necessary temporaries.

12.8. Derived forms and procedures

The forms and procedures described in this section can be
defined in terms of the forms and procedures described in
earlier sections of this chapter.

(with-syntax ((〈pattern〉 〈expression〉) . . . ) 〈body〉)
syntax

The with-syntax form is used to bind pattern variables,
just as let is used to bind variables. This allows a trans-
former to construct its output in separate pieces, then put
the pieces together.

Each 〈pattern〉 is identical in form to a syntax-case pat-
tern. The value of each 〈expression〉 is computed and de-
structured according to the corresponding 〈pattern〉, and
pattern variables within the 〈pattern〉 are bound as with
syntax-case to the corresponding portions of the value
within 〈body〉.

The with-syntax form may be defined in terms of
syntax-case as follows.

(define-syntax with-syntax

(lambda (x)

(syntax-case x ()

(( ((p e0) ...) e1 e2 ...)

(syntax (syntax-case (list e0 ...) ()

((p ...) (let () e1 e2 ...))))))))

The following definition of cond demonstrates the use of
with-syntax to support transformers that employ recur-
sion internally to construct their output. It handles all
cond clause variations and takes care to produce one-armed
if expressions where appropriate.

(define-syntax cond

(lambda (x)

(syntax-case x ()

[( c1 c2 ...)

(let f ([c1 #’c1] [c2* #’(c2 ...)])

(syntax-case c2* ()

[()

(syntax-case c1 (else =>)

[(else e1 e2 ...) #’(begin e1 e2 ...)]

[(e0) #’e0]

[(e0 => e1)

#’(let ([t e0]) (if t (e1 t)))]

[(e0 e1 e2 ...)

#’(if e0 (begin e1 e2 ...))])]

[(c2 c3 ...)

(with-syntax ([rest (f #’c2 #’(c3 ...))])

(syntax-case c1 (=>)

[(e0) #’(let ([t e0]) (if t t rest))]

[(e0 => e1)

#’(let ([t e0]) (if t (e1 t) rest))]

[(e0 e1 e2 ...)

#’(if e0

(begin e1 e2 ...)

rest)]))]))])))

(quasisyntax 〈template〉) syntax
unsyntax auxiliary syntax
unsyntax-splicing auxiliary syntax

The quasisyntax form is similar to syntax, but it allows
parts of the quoted text to be evaluated, in a manner sim-
ilar to the operation of quasiquote (report section 11.17).

Within a quasisyntax template, subforms of unsyntax

and unsyntax-splicing forms are evaluated, and every-
thing else is treated as ordinary template material, as
with syntax. The value of each unsyntax subform is
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inserted into the output in place of the unsyntax form,
while the value of each unsyntax-splicing subform is
spliced into the surrounding list or vector structure. Uses
of unsyntax and unsyntax-splicing are valid only within
quasisyntax expressions.

A quasisyntax expression may be nested, with each
quasisyntax introducing a new level of syntax quota-
tion and each unsyntax or unsyntax-splicing taking
away a level of quotation. An expression nested within
n quasisyntax expressions must be within n unsyntax or
unsyntax-splicing expressions to be evaluated.

As noted in report section 4.3.5, #`〈template〉 is equivalent
to (quasisyntax 〈template〉), #,〈template〉 is equivalent
to (unsyntax 〈template〉), and #,@〈template〉 is equiva-
lent to (unsyntax-splicing 〈template〉).

The quasisyntax keyword can be used in place of
with-syntax in many cases. For example, the definition of
case shown under the description of with-syntax above
can be rewritten using quasisyntax as follows.

(define-syntax case

(lambda (x)

(syntax-case x ()

[( e c1 c2 ...)

#`(let ([t e])

#,(let f ([c1 #’c1] [cmore #’(c2 ...)])

(if (null? cmore)

(syntax-case c1 (else)

[(else e1 e2 ...)

#’(begin e1 e2 ...)]

[((k ...) e1 e2 ...)

#’(if (memv t ’(k ...))

(begin e1 e2 ...))])

(syntax-case c1 ()

[((k ...) e1 e2 ...)

#`(if (memv t ’(k ...))

(begin e1 e2 ...)

#,(f (car cmore)

(cdr cmore)))]))))])))

Uses of unsyntax and unsyntax-splicing with zero or
more than one subform are valid only in splicing (list or
vector) contexts. (unsyntax template . . . ) is equivalent
to (unsyntax template) ..., and (unsyntax-splicing

template . . . ) is equivalent to (unsyntax-splicing

template) .... These forms are primarily useful as inter-
mediate forms in the output of the quasisyntax expander.

Note: Uses of unsyntax and unsyntax-splicing with zero

or more than one subform enable certain idioms [2], such as

#,@#,@, which has the effect of a doubly indirect splicing when

used within a doubly nested and doubly evaluated quasisyntax

expression, as with the nested quasiquote examples shown in

section 11.17.

Note: Any syntax-rules form can be expressed with
syntax-case by making the lambda expression and syntax ex-
pressions explicit, and syntax-rules may be defined in terms
of syntax-case as follows.

(define-syntax syntax-rules

(lambda (x)

(syntax-case x ()

[( (lit ...) [(k . p) t] ...)

(for-all identifier? #’(lit ... k ...))

#’(lambda (x)

(syntax-case x (lit ...)

[( . p) #’t] ...))])))

Note: The identifier-syntax form of the base library (see
report section 11.19) may be defined in terms of syntax-case,
syntax, and make-variable-transformer as follows.

(define-syntax identifier-syntax

(lambda (x)

(syntax-case x (set!)

[( e)

#’(lambda (x)

(syntax-case x ()

[id (identifier? #’id) #’e]

[( x (... ...)) #’(e x (... ...))]))]

[( (id exp1) ((set! var val) exp2))

(and (identifier? #’id) (identifier? #’var))

#’(make-variable-transformer

(lambda (x)

(syntax-case x (set!)

[(set! var val) #’exp2]

[(id x (... ...)) #’(exp1 x (... ...))]

[id (identifier? #’id) #’exp1])))])))

12.9. Syntax violations

(syntax-violation who message form) procedure
(syntax-violation who message form subform)

procedure

Who must be #f or a string or a symbol. Message must
be a string. Form must be a syntax object or a datum
value. Subform must be a syntax object or a datum value.
The syntax-violation procedure raises an exception, re-
porting a syntax violation. Who should describe the macro
transformer that detected the exception. The message ar-
gument should describe the violation. Form should be the
erroneous source syntax object or a datum value repre-
senting a form. The optional subform argument should be
a syntax object or datum value representing a form that
more precisely locates the violation.

If who is #f, syntax-violation attempts to infer an ap-
propriate value for the condition object (see below) as fol-
lows: When form is either an identifier or a list-structured
syntax object containing an identifier as its first element,
then the inferred value is the identifier’s symbol. Other-
wise, no value for who is provided as part of the condition
object.

The condition object provided with the exception (see
chapter 7) has the following condition types:
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• If who is not #f or can be inferred, the condition has
condition type &who, with who as the value of its field.
Otherwise, the condition does not have condition type
&who.

• The condition has condition type &message, with
message as the value of its field.

• The condition has condition type &syntax with form
and subform as the value of its fields. If subform is
not provided, the value of the subform field is #f.

13. Hashtables

The (rnrs hashtables (6)) library provides a set of op-
erations on hashtables. A hashtable is a data structure that
associates keys with values. Any object can be used as a
key, provided a hash function and a suitable equivalence
function is available. A hash function is a procedure that
maps keys to exact integer objects. It is the programmer’s
responsibility to ensure that the hash function is compat-
ible with the equivalence function, which is a procedure
that accepts two keys and returns true if they are equiv-
alent and #f otherwise. Standard hashtables for arbitrary
objects based on the eq? and eqv? predicates (see report
section 11.5) are provided. Also, hash functions for arbi-
trary objects, strings, and symbols are provided.

This section uses the hashtable parameter name for argu-
ments that must be hashtables, and the key parameter
name for arguments that must be hashtable keys.

13.1. Constructors

(make-eq-hashtable) procedure
(make-eq-hashtable k) procedure

Returns a newly allocated mutable hashtable that accepts
arbitrary objects as keys, and compares those keys with
eq?. If an argument is given, the initial capacity of the
hashtable is set to approximately k elements.

(make-eqv-hashtable) procedure
(make-eqv-hashtable k) procedure

Returns a newly allocated mutable hashtable that accepts
arbitrary objects as keys, and compares those keys with
eqv?. If an argument is given, the initial capacity of the
hashtable is set to approximately k elements.

(make-hashtable hash-function equiv) procedure
(make-hashtable hash-function equiv k) procedure

Hash-function and equiv must be procedures.
Hash-function should accept a key as an argument and

should return a non-negative exact integer object. Equiv
should accept two keys as arguments and return a single
value. Neither procedure should mutate the hashtable
returned by make-hashtable. The make-hashtable

procedure returns a newly allocated mutable hashtable
using hash-function as the hash function and equiv as
the equivalence function used to compare keys. If a third
argument is given, the initial capacity of the hashtable is
set to approximately k elements.

Both hash-function and equiv should behave like pure
functions on the domain of keys. For example, the
string-hash and string=? procedures are permissible
only if all keys are strings and the contents of those strings
are never changed so long as any of them continues to serve
as a key in the hashtable. Furthermore, any pair of keys
for which equiv returns true should be hashed to the same
exact integer objects by hash-function.

Implementation responsibilities: The implementation must
check the restrictions on hash-function and equiv to the
extent performed by applying them as described.

Note: Hashtables are allowed to cache the results of calling the

hash function and equivalence function, so programs cannot rely

on the hash function being called for every lookup or update.

Furthermore any hashtable operation may call the hash function

more than once.

13.2. Procedures

(hashtable? obj) procedure

Returns #t if obj is a hashtable, #f otherwise.

(hashtable-size hashtable) procedure

Returns the number of keys contained in hashtable as an
exact integer object.

(hashtable-ref hashtable key default) procedure

Returns the value in hashtable associated with key . If
hashtable does not contain an association for key , default
is returned.

(hashtable-set! hashtable key obj) procedure

Changes hashtable to associate key with obj , adding a new
association or replacing any existing association for key ,
and returns unspecified values.

(hashtable-delete! hashtable key) procedure

Removes any association for key within hashtable and re-
turns unspecified values.
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(hashtable-contains? hashtable key) procedure

Returns #t if hashtable contains an association for key , #f
otherwise.

(hashtable-update! hashtable key proc default)
procedure

Proc should accept one argument, should return a sin-
gle value, and should not mutate hashtable. The
hashtable-update! procedure applies proc to the value
in hashtable associated with key , or to default if hashtable
does not contain an association for key . The hashtable is
then changed to associate key with the value returned by
proc.

The behavior of hashtable-update! is equivalent to the
following code, but may be implemented more efficiently in
cases where the implementation can avoid multiple lookups
of the same key:

(hashtable-set!

hashtable key

(proc (hashtable-ref

hashtable key default)))

(hashtable-copy hashtable) procedure
(hashtable-copy hashtable mutable) procedure

Returns a copy of hashtable. If the mutable argument is
provided and is true, the returned hashtable is mutable;
otherwise it is immutable.

(hashtable-clear! hashtable) procedure
(hashtable-clear! hashtable k) procedure

Removes all associations from hashtable and returns un-
specified values.

If a second argument is given, the current capacity of the
hashtable is reset to approximately k elements.

(hashtable-keys hashtable) procedure

Returns a vector of all keys in hashtable. The order of the
vector is unspecified.

(hashtable-entries hashtable) procedure

Returns two values, a vector of the keys in hashtable, and
a vector of the corresponding values.

(let ((h (make-eqv-hashtable)))

(hashtable-set! h 1 ’one)

(hashtable-set! h 2 ’two)

(hashtable-set! h 3 ’three)

(hashtable-entries h))

=⇒ #(1 2 3) #(one two three)

; two return values
; entries may be in different order

13.3. Inspection

(hashtable-equivalence-function hashtable)
procedure

Returns the equivalence function used by hashtable
to compare keys. For hashtables created with
make-eq-hashtable and make-eqv-hashtable, returns
eq? and eqv? respectively.

(hashtable-hash-function hashtable) procedure

Returns the hash function used by hashtable. For
hashtables created by make-eq-hashtable or make-eqv-

hashtable, #f is returned.

(hashtable-mutable? hashtable) procedure

Returns #t if hashtable is mutable, otherwise #f.

13.4. Hash functions

The equal-hash, string-hash, and string-ci-hash pro-
cedures of this section are acceptable as the hash functions
of a hashtable only if the keys on which they are called
are not mutated while they remain in use as keys in the
hashtable.

(equal-hash obj) procedure

Returns an integer hash value for obj , based on its struc-
ture and current contents. This hash function is suitable
for use with equal? as an equivalence function.

Note: Like equal?, the equal-hash procedure must always

terminate, even if its arguments contain cycles.

(string-hash string) procedure

Returns an integer hash value for string , based on its cur-
rent contents. This hash function is suitable for use with
string=? as an equivalence function.

(string-ci-hash string) procedure

Returns an integer hash value for string based on its cur-
rent contents, ignoring case. This hash function is suitable
for use with string-ci=? as an equivalence function.

(symbol-hash symbol) procedure

Returns an integer hash value for symbol .

14. Enumerations

This chapter describes the (rnrs enums (6)) library for
dealing with enumerated values and sets of enumerated
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values. Enumerated values are represented by ordinary
symbols, while finite sets of enumerated values form a sep-
arate type, known as the enumeration sets. The enumer-
ation sets are further partitioned into sets that share the
same universe and enumeration type. These universes and
enumeration types are created by the make-enumeration

procedure. Each call to that procedure creates a new enu-
meration type.

This library interprets each enumeration set with respect to
its specific universe of symbols and enumeration type. This
facilitates efficient implementation of enumeration sets and
enables the complement operation.

In the descriptions of the following procedures, enum-set
ranges over the enumeration sets, which are defined as
the subsets of the universes that can be defined using
make-enumeration.

(make-enumeration symbol-list) procedure

Symbol-list must be a list of symbols. The make-

enumeration procedure creates a new enumeration type
whose universe consists of those symbols (in canonical or-
der of their first appearance in the list) and returns that
universe as an enumeration set whose universe is itself and
whose enumeration type is the newly created enumeration
type.

(enum-set-universe enum-set) procedure

Returns the set of all symbols that comprise the universe
of its argument, as an enumeration set.

(enum-set-indexer enum-set) procedure

Returns a unary procedure that, given a symbol that is in
the universe of enum-set , returns its 0-origin index within
the canonical ordering of the symbols in the universe; given
a symbol not in the universe, the unary procedure returns
#f.

(let* ((e (make-enumeration ’(red green blue)))

(i (enum-set-indexer e)))

(list (i ’red) (i ’green) (i ’blue) (i ’yellow)))

=⇒ (0 1 2 #f)

The enum-set-indexer procedure could be defined as fol-
lows using the memq procedure from the (rnrs lists (6))

library:

(define (enum-set-indexer set)

(let* ((symbols (enum-set->list

(enum-set-universe set)))

(cardinality (length symbols)))

(lambda (x)

(cond

((memq x symbols)

=> (lambda (probe)

(- cardinality (length probe))))

(else #f)))))

(enum-set-constructor enum-set) procedure

Returns a unary procedure that, given a list of symbols
that belong to the universe of enum-set , returns a subset
of that universe that contains exactly the symbols in the
list. The values in the list must all belong to the universe.

(enum-set->list enum-set) procedure

Returns a list of the symbols that belong to its argument,
in the canonical order of the universe of enum-set .

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(enum-set->list (c ’(blue red))))

=⇒ (red blue)

(enum-set-member? symbol enum-set) procedure
(enum-set-subset? enum-set1 enum-set2) procedure
(enum-set=? enum-set1 enum-set2) procedure

The enum-set-member? procedure returns #t if its first ar-
gument is an element of its second argument, #f otherwise.

The enum-set-subset? procedure returns #t if the uni-
verse of enum-set1 is a subset of the universe of enum-set2
(considered as sets of symbols) and every element of
enum-set1 is a member of enum-set2. It returns #f oth-
erwise.

The enum-set=? procedure returns #t if enum-set1 is a
subset of enum-set2 and vice versa, as determined by the
enum-set-subset? procedure. This implies that the uni-
verses of the two sets are equal as sets of symbols, but
does not imply that they are equal as enumeration types.
Otherwise, #f is returned.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(list

(enum-set-member? ’blue (c ’(red blue)))

(enum-set-member? ’green (c ’(red blue)))

(enum-set-subset? (c ’(red blue)) e)

(enum-set-subset? (c ’(red blue)) (c ’(blue red)))

(enum-set-subset? (c ’(red blue)) (c ’(red)))

(enum-set=? (c ’(red blue)) (c ’(blue red)))))

=⇒ (#t #f #t #t #f #t)

(enum-set-union enum-set1 enum-set2) procedure
(enum-set-intersection enum-set1 enum-set2)

procedure
(enum-set-difference enum-set1 enum-set2)

procedure

Enum-set1 and enum-set2 must be enumeration sets that
have the same enumeration type.
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The enum-set-union procedure returns the union of
enum-set1 and enum-set2. The enum-set-intersection

procedure returns the intersection of enum-set1 and
enum-set2. The enum-set-difference procedure returns
the difference of enum-set1 and enum-set2.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(list (enum-set->list

(enum-set-union (c ’(blue)) (c ’(red))))

(enum-set->list

(enum-set-intersection (c ’(red green))

(c ’(red blue))))

(enum-set->list

(enum-set-difference (c ’(red green))

(c ’(red blue))))))

=⇒ ((red blue) (red) (green))

(enum-set-complement enum-set) procedure

Returns enum-set ’s complement with respect to its uni-
verse.

(let* ((e (make-enumeration ’(red green blue)))

(c (enum-set-constructor e)))

(enum-set->list

(enum-set-complement (c ’(red)))))

=⇒ (green blue)

(enum-set-projection enum-set1 enum-set2)
procedure

Projects enum-set1 into the universe of enum-set2, drop-
ping any elements of enum-set1 that do not belong to the
universe of enum-set2. (If enum-set1 is a subset of the
universe of its second, no elements are dropped, and the
injection is returned.) The result has the enumeration type
of enum-set2.

(let ((e1 (make-enumeration

’(red green blue black)))

(e2 (make-enumeration

’(red black white))))

(enum-set->list

(enum-set-projection e1 e2)))

=⇒ (red black)

(define-enumeration 〈type-name〉 syntax
(〈symbol〉 . . . )
〈constructor-syntax〉)

The define-enumeration form defines an enumeration
type and provides two macros for constructing its mem-
bers and sets of its members.

A define-enumeration form is a definition and can appear
anywhere any other 〈definition〉 can appear.

〈Type-name〉 is an identifier that is bound as a syntactic
keyword; 〈symbol〉 . . . are the symbols that comprise the
universe of the enumeration (in order).

(〈type-name〉 〈symbol〉) checks at macro-expansion time
whether the name of 〈symbol〉 is in the universe associ-
ated with 〈type-name〉. If it is, (〈type-name〉 〈symbol〉) is
equivalent to 〈symbol〉. It is a syntax violation if it is not.

〈Constructor-syntax〉 is an identifier that is bound to a
macro that, given any finite sequence of the symbols in the
universe, possibly with duplicates, expands into an expres-
sion that evaluates to the enumeration set of those symbols.

(〈constructor-syntax〉 〈symbol〉 . . . ) checks at macro-
expansion time whether every 〈symbol〉 . . . is in the uni-
verse associated with 〈type-name〉. It is a syntax violation
if one or more is not. Otherwise

(〈constructor-syntax〉 〈symbol〉 . . . )

is equivalent to

((enum-set-constructor (〈constructor-syntax〉))
’(〈symbol〉 . . . )).

Example:

(define-enumeration color

(black white purple maroon)

color-set)

(color black) =⇒ black

(color purpel) =⇒ &syntax exception
(enum-set->list (color-set))=⇒ ()

(enum-set->list

(color-set maroon white)) =⇒ (white maroon)

Note: In (〈type-name〉 〈symbol〉) and (〈constructor-syntax〉
〈symbol〉 . . . ) forms, only the names of the 〈symbol〉s are sig-

nificant.

15. Composite library

The (rnrs (6)) library is a composite of most of the li-
braries described in this report. The only exceptions are:

• (rnrs eval (6)) (chapter 16)

• (rnrs mutable-pairs (6)) (chapter 17)

• (rnrs mutable-strings (6)) (chapter 18)

• (rnrs r5rs (6)) (chapter 19)
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The library exports all procedures and syntactic forms pro-
vided by the component libraries.

All of the bindings exported by (rnrs (6)) are exported
for both run and expand; see report section 7.2.

16. eval

The (rnrs eval (6)) library allows a program to create
Scheme expressions as data at run time and evaluate them.

(eval expression environment) procedure

Evaluates expression in the specified environment and re-
turns its value. Expression must be a syntactically valid
Scheme expression represented as a datum value, and
environment must be an environment, which can be cre-
ated using the environment procedure described below.

If the first argument to eval is determined not to be a
syntactically correct expression, then eval must raise an
exception with condition type &syntax. Specifically, if the
first argument to eval is a definition or a splicing begin

form containing a definition, it must raise an exception
with condition type &syntax.

(environment import-spec . . .) procedure

Import-spec must be a datum representing an
〈import spec〉 (see report section 7.1). The environment

procedure returns an environment corresponding to
import-spec.

The bindings of the environment represented by the spec-
ifier are immutable: If eval is applied to an expression
that is determined to contain an assignment to one of the
variables of the environment, then eval must raise an ex-
ception with a condition type &syntax.

(library (foo)

(export)

(import (rnrs)

(rnrs eval))

(write

(eval ’(let ((x 3)) x)

(environment ’(rnrs)))))

writes 3

(library (foo)

(export)

(import (rnrs)

(rnrs eval))

(write

(eval

’(eval:car (eval:cons 2 4))

(environment

’(prefix (only (rnrs) car cdr cons null?)

eval:)))))

writes 2

17. Mutable pairs

The procedures provided by the (rnrs mutable-pairs

(6)) library allow new values to be assigned to the car
and cdr fields of previously allocated pairs.

(set-car! pair obj) procedure

Stores obj in the car field of pair . The set-car! procedure
returns unspecified values.

(define (f) (list ’not-a-constant-list))

(define (g) ’(constant-list))

(set-car! (f) 3) =⇒ unspecified
(set-car! (g) 3) =⇒ unspecified

; should raise &assertion exception

If an immutable pair is passed to set-car!, an exception
with condition type &assertion should be raised.

(set-cdr! pair obj) procedure

Stores obj in the cdr field of pair . The set-cdr! procedure
returns unspecified values.

If an immutable pair is passed to set-cdr!, an exception
with condition type &assertion should be raised.

(let ((x (list ’a ’b ’c ’a))

(y (list ’a ’b ’c ’a ’b ’c ’a)))

(set-cdr! (list-tail x 2) x)

(set-cdr! (list-tail y 5) y)

(list

(equal? x x)

(equal? x y)

(equal? (list x y ’a) (list y x ’b))))

=⇒ (#t #t #f)

18. Mutable strings

The string-set! procedure provided by the (rnrs

mutable-strings (6)) library allows mutating the char-
acters of a string in-place.

(string-set! string k char) procedure

K must be a valid index of string . The string-set! pro-
cedure stores char in element k of string and returns un-
specified values.

Passing an immutable string to string-set! should cause
an exception with condition type &assertion to be
raised.

(define (f) (make-string 3 #\*))

(define (g) "***")

(string-set! (f) 0 #\?) =⇒ unspecified
(string-set! (g) 0 #\?) =⇒ unspecified

; should raise &assertion exception
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(string-set! (symbol->string ’immutable)

0

#\?) =⇒ unspecified
; should raise &assertion exception

Note: Implementors should make string-set! run in constant

time.

(string-fill! string char) procedure

Stores char in every element of the given string and returns
unspecified values.

19. R5RS compatibility

The features described in this chapter are exported from
the (rnrs r5rs (6)) library and provide some function-
ality of the preceding revision of this report [8] that was
omitted from the main part of the current report.

(exact->inexact z) procedure
(inexact->exact z) procedure

These are the same as the inexact and exact procedures;
see report section 11.7.4.

(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure

These procedures implement number-theoretic (integer) di-
vision. N2 must be non-zero. All three procedures return
integer objects. If n1/n2 is an integer object:

(quotient n1 n2) =⇒ n1/n2

(remainder n1 n2) =⇒ 0

(modulo n1 n2) =⇒ 0

If n1/n2 is not an integer object:

(quotient n1 n2) =⇒ nq

(remainder n1 n2) =⇒ nr

(modulo n1 n2) =⇒ nm

where nq is n1/n2 rounded towards zero, 0 < |nr| < |n2|,
0 < |nm| < |n2|, nr and nm differ from n1 by a multiple of
n2, nr has the same sign as n1, and nm has the same sign
as n2.

Consequently, for integer objects n1 and n2 with n2 not
equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))

(remainder n1 n2)))

=⇒ #t

provided all number object involved in that computation
are exact.

(modulo 13 4) =⇒ 1

(remainder 13 4) =⇒ 1

(modulo -13 4) =⇒ 3

(remainder -13 4) =⇒ -1

(modulo 13 -4) =⇒ -3

(remainder 13 -4) =⇒ 1

(modulo -13 -4) =⇒ -1

(remainder -13 -4) =⇒ -1

(remainder -13 -4.0) =⇒ -1.0

Note: These procedures could be defined in terms of div and
mod (see report section 11.7.4) as follows (without checking of
the argument types):

(define (sign n)

(cond

((negative? n) -1)

((positive? n) 1)

(else 0)))

(define (quotient n1 n2)

(* (sign n1) (sign n2) (div (abs n1) (abs n2))))

(define (remainder n1 n2)

(* (sign n1) (mod (abs n1) (abs n2))))

(define (modulo n1 n2)

(* (sign n2) (mod (* (sign n2) n1) (abs n2))))

(delay 〈expression〉) syntax

The delay construct is used together with the proce-
dure force to implement lazy evaluation or call by need.
(delay 〈expression〉) returns an object called a promise
which at some point in the future may be asked (by the
force procedure) to evaluate 〈expression〉, and deliver the
resulting value. The effect of 〈expression〉 returning multi-
ple values is unspecified.

(force promise) procedure

Promise must be a promise. The force procedure forces
the value of promise. If no value has been computed for
the promise, then a value is computed and returned. The
value of the promise is cached (or “memoized”) so that if
it is forced a second time, the previously computed value
is returned.

(force (delay (+ 1 2))) =⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p)))

=⇒ (3 3)

(define a-stream

(letrec ((next
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(lambda (n)

(cons n (delay (next (+ n 1)))))))

(next 0)))

(define head car)

(define tail

(lambda (stream) (force (cdr stream))))

(head (tail (tail a-stream)))

=⇒ 2

Promises are mainly intended for programs written in func-
tional style. The following examples should not be consid-
ered to illustrate good programming style, but they illus-
trate the property that only one value is computed for a
promise, no matter how many times it is forced.

(define count 0)

(define p

(delay (begin (set! count (+ count 1))

(if (> count x)

count

(force p)))))

(define x 5)

p =⇒ a promise
(force p) =⇒ 6

p =⇒ a promise, still
(begin (set! x 10)

(force p)) =⇒ 6

Here is a possible implementation of delay and force.
Promises are implemented here as procedures of no argu-
ments, and force simply calls its argument:

(define force

(lambda (object)

(object)))

The expression

(delay 〈expression〉)

has the same meaning as the procedure call

(make-promise (lambda () 〈expression〉))

as follows

(define-syntax delay

(syntax-rules ()

((delay expression)

(make-promise (lambda () expression))))),

where make-promise is defined as follows:

(define make-promise

(lambda (proc)

(let ((result-ready? #f)

(result #f))

(lambda ()

(if result-ready?

result

(let ((x (proc)))

(if result-ready?

result

(begin (set! result-ready? #t)

(set! result x)

result))))))))

(null-environment n) procedure

N must be the exact integer object 5. The
null-environment procedure returns an environment
specifier suitable for use with eval (see chapter 16) repre-
senting an environment that is empty except for the (syn-
tactic) bindings for all keywords described in the previous
revision of this report [8], including bindings for =>, ...,
else, and that are the same as those in the (rnrs base

(6)) library.

(scheme-report-environment n) procedure

N must be the exact integer object 5. The
scheme-report-environment procedure returns an en-
vironment specifier for an environment that is empty
except for the bindings for the identifiers described
in the previous revision of this report [8], omit-
ting load, interaction-environment, transcript-on,
transcript-off, and char-ready?. The variable bind-
ings have as values the procedures of the same names de-
scribed in this report, and the keyword bindings, including
=>, ..., else, and are the same as those described in this
report.
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS, KEYWORDS, AND
PROCEDURES

... 52
=> 25

52

accessor 15
antimark 51
&assertion 28
assertion-violation? 28
assoc 12
assp 12
assq 13
assv 13

base record type 15
big-endian 5
binary port 31, 32
binary-port? 34
bit fields 43
bitwise-and 49
bitwise-arithmetic-shift 50
bitwise-arithmetic-shift-left 50
bitwise-arithmetic-shift-right 50
bitwise-bit-count 49
bitwise-bit-field 49
bitwise-bit-set? 49
bitwise-copy-bit 49
bitwise-copy-bit-field 50
bitwise-first-bit-set 49
bitwise-if 49
bitwise-ior 49
bitwise-length 49
bitwise-not 49
bitwise-reverse-bit-field 50
bitwise-rotate-bit-field 50
bitwise-xor 49
bound-identifier=? 54
buffer-mode 32
buffer-mode? 32
byte 5
bytevector 5
bytevector->sint-list 7
bytevector->string 34
bytevector->u8-list 6
bytevector->uint-list 7
bytevector-copy 6
bytevector-copy! 6
bytevector-fill! 6
bytevector-ieee-double-native-ref 9
bytevector-ieee-double-native-set! 9
bytevector-ieee-double-ref 9
bytevector-ieee-single-native-ref 9
bytevector-ieee-single-native-set! 9

bytevector-ieee-single-ref 9
bytevector-length 5
bytevector-s16-native-ref 7
bytevector-s16-native-set! 7
bytevector-s16-ref 7
bytevector-s16-set! 7
bytevector-s32-native-ref 8
bytevector-s32-native-set! 8
bytevector-s32-ref 8
bytevector-s32-set! 8
bytevector-s64-native-ref 8
bytevector-s64-native-set! 8
bytevector-s64-ref 8
bytevector-s64-set! 8
bytevector-s8-ref 6
bytevector-s8-set! 6
bytevector-sint-ref 6
bytevector-sint-set! 6
bytevector-u16-native-ref 7
bytevector-u16-native-set! 7
bytevector-u16-ref 7
bytevector-u16-set! 7
bytevector-u32-native-ref 8
bytevector-u32-native-set! 8
bytevector-u32-ref 8
bytevector-u32-set! 8
bytevector-u64-native-ref 8
bytevector-u64-native-set! 8
bytevector-u64-ref 8
bytevector-u64-set! 8
bytevector-u8-ref 6
bytevector-u8-set! 6
bytevector-uint-ref 6
bytevector-uint-set! 6
bytevector=? 6
bytevector? 5

call by need 64
call-with-bytevector-output-port 39
call-with-input-file 42
call-with-output-file 42
call-with-port 35
call-with-string-output-port 39
case-lambda 15
char-alphabetic? 3
char-ci<=? 3
char-ci<? 3
char-ci=? 3
char-ci>=? 3
char-ci>? 3
char-downcase 3
char-foldcase 3
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char-general-category 4
char-lower-case? 3
char-numeric? 3
char-title-case? 3
char-titlecase 3
char-upcase 3
char-upper-case? 3
char-whitespace? 3
close-input-port 42
close-output-port 42
close-port 35
codec 32
command-line 43
compound condition 26
condition 26
&condition 26
condition 26
condition-accessor 26
condition-irritants 28
condition-message 28
condition-predicate 26
condition-who 29
condition? 26
cons* 13
constructor descriptor 21
continuable exception 25
current exception handler 24
current-error-port 40, 42
current-input-port 36, 42
current-output-port 40, 42

datum->syntax 56
define-condition-type 27
define-enumeration 62
define-record-type 16
delay 64
delete-file 43
display 43
do 14

else 25
end-of-file object 34
end-of-line style 32
endianness 5
endianness 5
enum-set->list 61
enum-set-complement 62
enum-set-constructor 61
enum-set-difference 61
enum-set-indexer 61
enum-set-intersection 61
enum-set-member? 61
enum-set-projection 62
enum-set-subset? 61
enum-set-union 61
enum-set-universe 61

enum-set=? 61
enumeration 60
enumeration sets 61
enumeration type 61
environment 63
environment 63
eof-object 34, 42
eof-object? 34, 42
eol-style 32
equal-hash 60
equivalence function 59
&error 28
error-handling-mode 33
error? 28
eval 63
exact->inexact 64
exceptional situation 26
exceptions 24
exists 10
exit 43

field 15
fields 16
file options 31
file-exists? 43
file-options 31
filter 11
find 10
fixnum->flonum 49
fl* 47
fl+ 47
fl- 47
fl/ 47
fl<=? 46
fl<? 46
fl=? 46
fl>=? 46
fl>? 46
flabs 47
flacos 48
flasin 48
flatan 48
flceiling 48
flcos 48
fldenominator 47
fldiv 47
fldiv-and-mod 47
fldiv0 47
fldiv0-and-mod0 47
fleven? 47
flexp 48
flexpt 48
flfinite? 47
flfloor 48
flinfinite? 47
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flinteger? 47
fllog 48
flmax 47
flmin 47
flmod 47
flmod0 47
flnan? 47
flnegative? 47
flnumerator 47
flodd? 47
flonum? 46
flpositive? 47
flround 48
flsin 48
flsqrt 48
fltan 48
fltruncate 48
flush-output-port 39
flzero? 47
fold-left 11
fold-right 11
for-all 10
force 64
free-identifier=? 55
fx* 44
fx*/carry 45
fx+ 44
fx+/carry 44
fx- 44
fx-/carry 44
fx<=? 44
fx<? 44
fx=? 44
fx>=? 44
fx>? 44
fxand 45
fxarithmetic-shift 46
fxarithmetic-shift-left 46
fxarithmetic-shift-right 46
fxbit-count 45
fxbit-field 45
fxbit-set? 45
fxcopy-bit 45
fxcopy-bit-field 45
fxdiv 44
fxdiv-and-mod 44
fxdiv0 44
fxdiv0-and-mod0 44
fxeven? 44
fxfirst-bit-set 45
fxif 45
fxior 45
fxlength 45
fxmax 44
fxmin 44

fxmod 44
fxmod0 44
fxnegative? 44
fxnot 45
fxodd? 44
fxpositive? 44
fxreverse-bit-field 46
fxrotate-bit-field 46
fxxor 45
fxzero? 44

generate-temporaries 57
get-bytevector-all 37
get-bytevector-n 37
get-bytevector-n! 37
get-bytevector-some 37
get-char 38
get-datum 38
get-line 38
get-string-all 38
get-string-n 38
get-string-n! 38
get-u8 37
guard 25

hash function 59
hashtable 59
hashtable-clear! 60
hashtable-contains? 60
hashtable-copy 60
hashtable-delete! 59
hashtable-entries 60
hashtable-equivalence-function 60
hashtable-hash-function 60
hashtable-keys 60
hashtable-mutable? 60
hashtable-ref 59
hashtable-set! 59
hashtable-size 59
hashtable-update! 60
hashtable? 59

&i/o 30
&i/o-decoding 33
i/o-decoding-error? 33
&i/o-encoding 33
i/o-encoding-error-char 33
i/o-encoding-error? 33
i/o-error-filename 30
i/o-error-port 31
i/o-error-position 30
i/o-error? 30
&i/o-file-already-exists 30
i/o-file-already-exists-error? 30
&i/o-file-does-not-exist 31
i/o-file-does-not-exist-error? 31
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&i/o-file-is-read-only 30
i/o-file-is-read-only-error? 30
&i/o-file-protection 30
i/o-file-protection-error? 30
&i/o-filename 30
i/o-filename-error? 30
&i/o-invalid-position 30
i/o-invalid-position-error? 30
&i/o-port 31
i/o-port-error? 31
&i/o-read 30
i/o-read-error? 30
&i/o-write 30
i/o-write-error? 30
identifier macro 54
identifier? 54
immutable 16
immutable record type 16
&implementation-restriction 29
implementation-restriction-violation? 29
implicit identifier 56
inexact->exact 64
input port 31
input-port? 35
&irritants 28
irritants-condition? 28

latin-1-codec 32
lazy evaluation 64
&lexical 29
lexical-violation? 29
list-sort 13
little-endian 5
lookahead-char 38
lookahead-u8 37

macro transformer 52
make-assertion-violation 28
make-bytevector 5
make-custom-binary-input-port 36
make-custom-binary-input/output-port 41
make-custom-binary-output-port 40
make-custom-textual-input-port 36
make-custom-textual-input/output-port 41
make-custom-textual-output-port 40
make-enumeration 61
make-eq-hashtable 59
make-eqv-hashtable 59
make-error 28
make-hashtable 59
make-i/o-decoding-error 33
make-i/o-encoding-error 33
make-i/o-error 30
make-i/o-file-already-exists-error 30
make-i/o-file-does-not-exist-error 31
make-i/o-file-is-read-only-error 30

make-i/o-file-protection-error 30
make-i/o-filename-error 30
make-i/o-invalid-position-error 30
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make-message-condition 28
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make-syntax-violation 29
make-transcoder 33
make-undefined-violation 29
make-variable-transformer 52
make-violation 28
make-warning 28
make-who-condition 29
mark 51
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memp 12
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memv 12
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modulo 64
mutable 16
mutable record type 16
mutator 15
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native-eol-style 33
native-transcoder 33
newline 43
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&non-continuable 29
non-continuable-violation? 29
nongenerative 16
nongenerative 16
null-environment 65
number 43

octet 5
opaque 16
open-bytevector-input-port 35
open-bytevector-output-port 39
open-file-input-port 35
open-file-input/output-port 41
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open-file-output-port 39
open-input-file 42
open-output-file 42
open-string-input-port 36
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output ports 31
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output-port? 39
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port 31
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port-transcoder 34
port? 34
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promise 64
protocol 21
protocol 16
put-bytevector 40
put-char 41
put-datum 41
put-string 41
put-u8 40
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raise 25
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read 42
read-char 42
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record-accessor 22
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record-mutator 22
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record-type-descriptor? 21
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record-type-generative? 24
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region 14
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remp 12
remq 12
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(rnrs sorting (6)) 13
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(rnrs unicode (6)) 3
rtd 20

scheme-report-environment 65
sealed 16
sealed 16
&serious 28
serious-condition? 28
set-car! 63
set-cdr! 63
set-port-position! 34
simple condition 26
simple-conditions 26
sint-list->bytevector 7
standard-error-port 40
standard-input-port 36
standard-output-port 40
string->bytevector 34
string->utf16 9
string->utf32 9
string->utf8 9
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string-ci-hash 60
string-ci<=? 4
string-ci<? 4
string-ci=? 4
string-ci>=? 4
string-ci>? 4
string-downcase 4
string-fill! 64
string-foldcase 4
string-hash 60
string-normalize-nfc 4
string-normalize-nfd 4
string-normalize-nfkc 4
string-normalize-nfkd 4
string-set! 63
string-titlecase 4
string-upcase 4
substitution 51
symbol-hash 60
&syntax 29
syntax 53
syntax object 51
syntax->datum 56
syntax-case 52
syntax-violation 58
syntax-violation-form 29
syntax-violation-subform 29
syntax-violation? 29

textual port 32
textual ports 31
textual-port? 34
transcoded-port 34
transcoder 32
transcoder-codec 33
transcoder-eol-style 33
transcoder-error-handling-mode 34
transformation procedure 52
transformer 52

u8-list->bytevector 6
uint-list->bytevector 7
&undefined 29
undefined-violation? 29
universe 61
unless 14
unsyntax 57
unsyntax-splicing 57
utf-16-codec 32
utf-8-codec 32
utf16->string 10
utf32->string 10
utf8->string 9

variable transformer 52
vector-sort 13

vector-sort! 13
&violation 28
violation? 28

&warning 28
warning? 28
when 14
&who 29
who-condition? 29
with-exception-handler 24
with-input-from-file 42
with-output-to-file 42
with-syntax 57
wrap 51
wrapped syntax object 51
write 43
write-char 42
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