
Revised6 Report on the Algorithmic Language

Scheme

— Rationale —

MICHAEL SPERBER

R. KENT DYBVIG, MATTHEW FLATT, ANTON VAN STRAATEN

(Editors)
RICHARD KELSEY, WILLIAM CLINGER, JONATHAN REES

(Editors, Revised5 Report on the Algorithmic Language Scheme)

((((((((((
26 September 2007

Unofficial version incorporating errata
https://standards.scheme.org/

21 July 2019

SUMMARY

This document describes rationales for some of the design decisions behind the Revised6 Report on the Algorithmic
Language Scheme. The focus is on changes made since the last revision on the report. Moreover, numerous fundamental
design decisions of Scheme are explained. This report also contains some historical notes. The formal comments
submitted for drafts of the report and their responses, as archived on http://www.r6rs.org/, provides additional
background information on many decisions that are reflected in the report.

This document is not intended to be an exhaustive justification for every decision and design aspect of the report.
Instead, it provides information about some of the issues considered by the editors’ committee when decisions were
made, as background information and as guidelines for future decision makers. As such, the rationales given here may
not be convincing to every reader, but they convinced the editors at the time the respective decisions were made.

This document frequently refers back to the Revised6 Report on the Algorithmic Language Scheme [34], the Revised6

Report on the Algorithmic Language Scheme — Libraries — [35], and the Revised6 Report on the Algorithmic Language
Scheme — Non-Normative Appendices — [33]; specific references to the report are identified by designations such as
“report section” or “report chapter”, references to the library report are identified by designations such as “library
section” or “library chapter”, and references to the appendices are identified by designations such as “appendix” or
“appendix section”. This document frequently refers to the whole Revised6 Report on the Algorithmic Language Scheme
as “R6RS”, and to the Revised5 Report on the Algorithmic Language Scheme as “R5RS”.

We intend this report to belong to the entire Scheme community, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

https://standards.scheme.org/
http://www.r6rs.org/

2 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

CONTENTS

1 Historical background 3

2 Requirement levels 3

3 Numbers . 3

3.1 Infinities, NaNs 3

3.2 Distinguished -0.0 4

4 Lexical syntax and datum syntax 4

4.1 Symbol and identifier syntax 4

4.2 Comments 4

4.3 Future extensions 5

5 Semantic concepts 5

5.1 Argument and subform checking 5

5.2 Safety . 5

5.3 Proper tail recursion 5

6 Entry format . 6

7 Libraries . 6

7.1 Syntax . 6

7.2 Local import 6

7.3 Local modules 6

7.4 Fixed import and export clauses 6

7.5 Instantiation and initialization 7

7.6 Immutable exports 7

7.7 Compound library names 7

7.8 Versioning 7

7.9 Treatment of different versions 7

8 Top-level programs 7

9 Primitive syntax 8

9.1 Unspecified evaluation order 8

10 Expansion process 8

11 Base library . 8

11.1 Library organization 8

11.2 Bodies . 8

11.3 Export levels 9

11.4 Binding forms 9

11.5 Equivalence predicates 9

11.6 Arithmetic 10

11.7 Characters and strings 12

11.8 Symbols . 13

11.9 Control features 13

11.10Macro transformers 13

12 Formal semantics 14

13 Unicode . 14

13.1 Case mapping 14

14 Bytevectors . 14

15 List utilities . 14

15.1 Notes on individual procedures 14

16 Sorting . 14

17 Control structures 15

17.1 when and unless 15

17.2 case-lambda 15

18 Records . 15

18.1 Syntactic layer 15

18.2 Positional access and field names 15

18.3 Lack of multiple inheritance 15

18.4 Constructor mechanism 15

18.5 Sealed record types 15

19 Conditions and exceptions 16

19.1 Exceptions 16

19.2 Conditions 16

20 I/O . 16

20.1 File names 16

20.2 File options 17

20.3 End-of-line styles 17

20.4 Error-handling modes 17

20.5 Binary and textual ports 17

20.6 File positions 17

20.7 Freshness of standard ports 17

20.8 Argument conventions 17

21 File system . 17

22 Arithmetic . 17

22.1 Fixnums and flonums 17

22.2 Bitwise operations 18

22.3 Notes on individual procedures 18

23 syntax-case . 18

24 Hashtables . 18

24.1 Caching . 18

24.2 Immutable hashtables 18

24.3 Hash functions 18

25 Enumerations . 18

26 Composite library 19

27 Mutable pairs . 19

28 Mutable strings 19

References . 19

1. Historical background 3

1. Historical background

The Revised6 Report on the Algorithmic Language Scheme
(R6RS for short) is the sixth of the Revised Reports on
Scheme.

The first description of Scheme was written by Gerald Jay
Sussman and Guy Lewis Steele Jr. in 1975 [39]. A revised
report by Steele and Sussman [38] appeared in 1978 and
described the evolution of the language as its MIT imple-
mentation was upgraded to support an innovative com-
piler [36]. Three distinct projects began in 1981 and 1982
to use variants of Scheme for courses at MIT, Yale, and
Indiana University [27, 25, 12]. An introductory computer
science textbook using Scheme was published in 1984 [1].
A number of textbooks describing and using Scheme have
been published since [8].

As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it difficult to understand code written at other
sites. Fifteen representatives of the major implementa-
tions of Scheme therefore met in October 1984 to work
toward a better and more widely accepted standard for
Scheme. Participating in this workshop were Hal Abel-
son, Norman Adams, David Bartley, Gary Brooks, William
Clinger, Daniel Friedman, Robert Halstead, Chris Han-
son, Christopher Haynes, Eugene Kohlbecker, Don Oxley,
Jonathan Rees, Guillermo Rozas, Gerald Jay Sussman, and
Mitchell Wand. Their report [3], edited by Will Clinger,
was published at MIT and Indiana University in the sum-
mer of 1985. Further revision took place in the spring
of 1986 [4] (edited by Jonathan Rees and Will Clinger),
and in the spring of 1988 [5] (also edited by Will Clinger
and Jonathan Rees). Another revision published in 1998,
edited by Richard Kelsey, Will Clinger and Jonathan Rees,
reflected further revisions agreed upon in a meeting at Xe-
rox PARC in June 1992 [21].

Attendees of the Scheme Workshop in Pittsburgh in Octo-
ber 2002 formed a Strategy Committee to discuss a pro-
cess for producing new revisions of the report. The strat-
egy committee drafted a charter for Scheme standardiza-
tion. This charter, together with a process for selecting
editorial committees for producing new revisions of the re-
port, was confirmed by the attendees of the Scheme Work-
shop in Boston in November 2003. Subsequently, a Steer-
ing Committee according to the charter was selected, con-
sisting of Alan Bawden, Guy L. Steele Jr., and Mitch
Wand. An editors’ committee charged with producing a
new revision of the report was also formed at the end of
2003, consisting of Will Clinger, R. Kent Dybvig, Marc
Feeley, Matthew Flatt, Richard Kelsey, Manuel Serrano,
and Mike Sperber, with Marc Feeley acting as Editor-in-
Chief. Richard Kelsey resigned from the committee in
April 2005, and was replaced by Anton van Straaten. Marc
Feeley and Manuel Serrano resigned from the committee
in January 2006. Subsequently, the charter was revised

to reduce the size of the editors’ committee to five and
to replace the office of Editor-in-Chief by a Chair and a
Project Editor [29]. R. Kent Dybvig served as Chair, and
Mike Sperber served as Project Editor. Will Clinger re-
signed from the committee in May 2007. Parts of the re-
port were posted as Scheme Requests for Implementation
(SRFIs, see http://srfi.schemers.org/) and discussed
by the community before being revised and finalized for
the report [14, 2, 6, 13, 9]. Jacob Matthews and Robby
Findler wrote the operational semantics for the language
core, based on an earlier semantics for the language of the
“Revised5 Report” [24].

2. Requirement levels

R6RS distinguishes between different requirement levels,
both for the programmer and for the implementation.
Specifically, the distinction between “should” and “must”
is important: For example, “should” is used for restrictions
on argument types that are undecidable or potentially too
expensive to enforce. The use of “should” allows implemen-
tations to perform quite extensive checking of restrictions
on arguments (see section 5.1), but also to eschew more
expensive checks.

3. Numbers

3.1. Infinities, NaNs

Infinities and NaNs are artifacts that help deal with the in-
exactness of binary floating-point arithmetic. The seman-
tics dealing with infinities and NaNs, or the circumstances
leading to their generation are somewhat arbitrary. How-
ever, as most Scheme implementation use an IEEE-754-
conformant implementation [18] of flonums, R6RS uses the
particular semantics from this standard as the basis for the
treatment of infinities and NaNs in the report. This is also
the reason why infinities and NaNs are flonums and thus in-
exact real number objects, allowing Scheme systems to ex-
ploit the closure properties arising from their being part of
the standard IEEE-754 floating-point representation. See
section 11.6.6 for details on closure properties.

Infinities and NaNs are not considered integers (or even ra-
tional) by R6RS. Despite this, the ceiling, floor, round,
and truncate procedures (and their fl-prefixed counter-
parts) return an infinity or NaN when given an infinity
or NaN as an argument. This has the advantage of al-
lowing these procedures to take arbitrary real (or flonum)
arguments but the disadvantage that they do not always
return integer values. The integer values of the mathemat-
ical equivalents of these procedures are, in fact, infinite for
infinite inputs. Also, while infinities are not considered
integers, they might represent infinite integers. So the ex-
tension to infinities, at least, makes sense. The extension
to NaNs is somewhat more arbitrary.

http://srfi.schemers.org/

4 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

R6RS intentionally does not require a Scheme implemen-
tation to use infinities and NaNs as specified in IEEE 754.
Hence, support for them is optional.

3.2. Distinguished -0.0

A distinguished -0.0 is another artifact of IEEE 754, which
can be used to construct certain branch cuts. A Scheme
implementation is not required to distinguish -0.0. If it
does, however, the behavior of the transcendental functions
is sensitive to the distinction.

4. Lexical syntax and datum syntax

4.1. Symbol and identifier syntax

4.1.1. Escaped symbol constituents

While revising the syntax of symbols and identifiers, the
editors’ goal was to make symbols subject to write/read
invariance, i.e. to allow each symbol to be written out us-
ing put-datum (section 8.2.12) or write (section 8.3), and
read back in using get-datum (section 8.2.9) or read (sec-
tion 8.3), yielding the same symbol. This was not the case
in Revised5 Report on the Algorithmic Language Scheme, as
symbols could contain arbitrary characters such as spaces
which could not be part of their external representation.
Moreover, symbols could be distinguished internally by
case, whereas their external representation could not.

For representing unusual characters in the symbol syntax,
the report provides the \x escape syntax, which allows an
arbitrary Unicode scalar value to be specified. This also
has the advantage that arbitrary symbols can be repre-
sented using only ASCII, which allows referencing them
from Scheme programs restricted to ASCII or some other
subset of Unicode.

Among existing implementations of Scheme, a popular
choice for extending the set of characters that can occur in
symbols is the vertical-bar syntax of Common Lisp. The
vertical-bar syntax of Common Lisp carries the risk of con-
fusing the syntax of identifiers with that of consecutive lex-
emes, and also does not allow representing arbitrary char-
acters using only ASCII. Consequently, it was not adopted
for R6RS.

4.1.2. Case sensitivity

The change from case-insensitive syntax in R5RS to case-
sensitive syntax is a major change. Many technical ar-
guments exist in favor of both case sensitivity and case
insensitivity, and any attempt to list them all here would
be incomplete.

The editors decided to switch to case sensitivity, because
they perceived that a significant majority of the Scheme
community favored the change. This perception has been
strengthened by polls at the 2004 Scheme workshop, on the
plt-scheme mailing list, and the r6rs-discuss mailing
list.

The suggested directives described in appendix B allow
programs to specify that a section of the code (or other
syntactic data) was written under the old assumption of
case-insensitivity and therefore must be case-folded upon
reading.

4.1.3. Identifiers starting with ->

R6RS introduces a special rule in the lexical syntax for
identifiers starting with the characters ->. In R5RS, such
identifiers are not valid lexemes. (In R5RS, a lexeme start-
ing with a - character—except for - itself—must be a rep-
resentation of a number object.) However, many existing
Scheme implementations prior to R6RS already supported
identifiers starting with ->. (Many readers would clas-
sify any lexeme as an identifier starting with - for which
string->number returns #f.) As a result, a significant
amount of otherwise portable Scheme code used identifiers
starting with ->, which are a convenient choice for certain
names. Therefore, R6RS legalizes these identifiers. The
separate production in the grammar is not particularly el-
egant. However, designing a more elegant production that
does not overlap with representations of number objects or
other lexeme classes has proven to be surprisingly difficult.

4.2. Comments

While R5RS provides only the ; syntax for comments, the
report now describes three comment forms: In addition
to ;, #| and |# delimit block comments, and #; starts a
“datum comment”. (#!r6rs is also a kind of comment,
albeit with a specific, fixed purpose.)

Block comments provide a convenient way of writing multi-
line comments, and are an often-requested and often-
implemented syntactic addition to the language.

A datum comment always comments out a single datum—
no more, and no less, something the other comment forms
cannot reliably do. Their uses include commenting out
alternative versions of a form and commenting out forms
that may be required only in certain circumstances. Datum
comments are perhaps most useful during development and
debugging and may thus be less likely to appear in the
final version of a distributed library or top-level program;
even so, a programmer or group of programmers sometimes
develop and debug a single piece of code concurrently on
multiple systems, in which case a standard notation for
commenting out a datum is useful.

5. Semantic concepts 5

4.3. Future extensions

The # is the prefix of several different kinds of syntactic
entities: vectors, bytevectors, syntactic abbreviations re-
lated to syntax construction, nested comments, characters,
#!r6rs, and implementation-specific extensions to the syn-
tax that start with #!. In each case, the character following
the # specifies what kind of syntactic datum follows. In the
case of bytevectors, the syntax anticipates several different
kinds of homogeneous vectors, even though R6RS specifies
only one. The u8 after the #v identifies the components of
the vector as unsigned 8-bit entities or octets.

5. Semantic concepts

5.1. Argument and subform checking

The report requires implementations to check the argu-
ments of procedures and subforms for syntactic forms for
adherence to the specification. However, implementations
are not required to detect every violation of a specification.
Specifically, the report allows the following exceptions:

1. Some restrictions are undecidable. Hence, checking is
not required, such as certain properties of procedures
passed as arguments, or properties of subexpressions,
whose macro expansion may not terminate.

2. Checking that an argument is a list where doing so
would be impractical or expensive is not required.
Specifically, procedures that invoke another procedure
passed as an argument are not required to check that
a list remains a list after every invocation.

3. With some procedures, future extensions to the argu-
ments they accept are explicitly allowed.

The second item deserves special attention, as the specific
decisions made for the report are meant to enable “picky”
implementations that catch as many violations and un-
portable assumptions made by programs as possible, while
also enabling practical implementations that execute pro-
grams quickly.

5.2. Safety

R5RS describes many situations not specified in the report
as “is an error”: Portable R5RS programs cannot cause
such situations, but R5RS implementations are free to im-
plement arbitrary behavior under this umbrella. Arbitrary
behavior can include “crashing” the running program, or
somehow compromising the integrity of its execution model
to result in random behavior. This situation stands in
sharp contrast to the common assumption that Scheme is a

“safe” language, where each violation of a restriction of the
language standard or the implementation would at least re-
sult in defined behavior (e.g., interrupting or aborting the
program, or starting a debugger).

To avoid the problems associated with this arbitrary be-
havior, all libraries specified in the report must be safe,
and they react to detected violations of the specification
by raising an exception, which allows the program to de-
tect and react to the violation itself.

The report allows implementations to provide “unsafe” li-
braries that may compromise safety.

5.3. Proper tail recursion

Intuitively, no space is needed for an active tail call, be-
cause the continuation that is used in the tail call has the
same semantics as the continuation passed to the proce-
dure containing the call. Although an improper implemen-
tation might use a new continuation in the call, a return
to this new continuation would be followed immediately
by a return to the continuation passed to the procedure.
A properly tail-recursive implementation returns to that
continuation directly.

Proper tail recursion was one of the central ideas in Steele
and Sussman’s original version of Scheme. Their first
Scheme interpreter implemented both functions and ac-
tors. Control flow was expressed using actors, which dif-
fered from functions in that they passed their results on
to another actor instead of returning to a caller. In the
terminology of the report, each actor finished with a tail
call to another actor.

Steele and Sussman later observed that in their interpreter
the code for dealing with actors was identical to that for
functions and thus there was no need to include both in
the language.

While a proper tail recursion has been a cornerstone prop-
erty of Scheme since its inception, it is difficult to imple-
ment efficiently on some architectures, specifically those
compiling to higher-level intermediate languages such as C
or to certain virtual-machine architectures such as JVM or
CIL.

Nevertheless, abandoning proper tail recursion as a lan-
guage property and relegating it to optional optimizations
would have far-reaching consequences: Many programs
written with the assumption of proper tail recursion would
no longer work. Moreover, the lack of proper tail recursion
would prevent the natural expression of certain program-
ming styles such as Actors-style message-passing systems,
self-replacing servers, or automata written as mutually re-
cursive procedures. Furthermore, if they did not exist,
special “loop” constructs would have to be added to the
language to compensate for the lack of a general iteration

6 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

construct. Consequently, proper tail recursion remains an
essential aspect of the Scheme language.

6. Entry format

While it is reasonable to require the programmer to adhere
to restrictions on arguments, some of these restrictions are
either undecidable or too expensive to always enforce (see
section 5.1). Therefore, some entries have an additional
paragraph labelled “Implementation responsibilities” that
distinguishes the responsibilities of the programmer from
those of the implementation.

7. Libraries

The design of the library system was a challenging process:
Many existing Scheme implementations offer “module sys-
tems”, but they differ dramatically both in functionality
and in the goals they address. The library system was de-
signed with the primary requirement of allowing program-
mers to write, distribute, and evolve portable code. A
secondary requirement was to be able to separately com-
pile libraries in the sense that compiling a library requires
only having compiled its dependencies. This entailed the
following corollary requirements:

• Composing libraries requires management of depen-
dencies.

• Libraries from different sources may have name con-
flicts. Consequently, name-space management is
needed.

• Macro definitions appear in portable code, requiring
that macro bindings may be exported from libraries,
with all the consequences dictated by the referential-
transparency property of hygienic macros.

The library system does not address the following goals,
which were considered during the design process:

• independent compilation

• mutually dependent libraries

• separation of library interface from library implemen-
tation

• local modules and local imports

This section discusses some aspects of the design of the
library system that have been controversial.

7.1. Syntax

A library definition is a single form, rather than a sequence
of forms where some forms are some kind of header and
the remaining forms contain the actual code. It is not
clear that a sequence of forms is more convenient than a
single form for processing and generation. Both syntactic
choices have technical merits and drawbacks. The single-
form syntax chosen for R6RS has the advantage of being
self-delimiting.

A difference between top-level programs and libraries is
that a program contains only one top-level program but
multiple libraries. Thus, delimiting the text for a library
body will be a common need (in streams of various kinds)
that it is worth standardizing the delimiters; parentheses
are the obvious choice.

7.2. Local import

Some Scheme implementations feature module systems
that allow a module’s bindings to be imported into a local
environment. While local imports can be used to limit the
scope of an import and thus lead to more modular code
and less need for the prefixing and renaming of imports,
the existence of local imports would mean that the set of
libraries upon which a library depends cannot be approx-
imated as precisely from the library header. (The precise
set of libraries used cannot be determined even in the ab-
sense of local import, because a library might be listed but
its exports not used, and a library not listed might still
be imported at run time through the environment proce-
dure.) Leaving out local import for now does not preclude
it from being added later.

7.3. Local modules

Some Scheme implementations feature local libraries
and/or modules, e.g., libraries or modules that appear
within top-level libraries or within local bodies. This fea-
ture allows libraries and top-level programs to be further
subdivided into modular subcomponents, but it also com-
plicates the scoping rules of the language. Whereas the
library system allows bindings to be transported only from
one library top level to another, local modules allow bind-
ings to be transported from one local scope to another,
which complicates the rules for determining where identi-
fiers are bound. Leaving out local libraries and modules
for now does not preclude them from being added later.

7.4. Fixed import and export clauses

The import and export clauses of the library form are a
fixed part of the library syntax. This eliminates the need

8. Top-level programs 7

to specify in what language or language version the clauses
are written and simplifies the process of approximating the
set of libraries upon which a library depends, as described
in section 7.2. A downside is that import and export

clauses cannot be abstracted, i.e., cannot be the products
of macro calls.

7.5. Instantiation and initialization

Opinions vary on how libraries should be instantiated and
initialized during the expansion and execution of library
bodies, whether library instances should be distinguished
across phases, and whether levels should be declared so
that they constrain identifier uses to particular phases.
This report therefore leaves considerable latitude to im-
plementations, while attempting to provide enough guar-
antees to make portable libraries feasible.

Note that, if each right-hand side of the keyword def-
inition and keyword binding forms appearing in a pro-
gram is a syntax-rules or identifier-syntax form,
syntax-rules and identifier-syntax forms do not ap-
pear in any other contexts, and no import form employs
for to override the default import phases, then the pro-
gram does not depend on whether instances are distin-
guished across phases, and the phase of an identifier’s use
cannot be inconsistent with the identifier’s level. Moreover,
the phase of an identifier’s use is never inconsistent with
the identifier’s level if the implementation uses an implicit
phasing model in which references are allowed at any phase
regardless of any phase declarations.

7.6. Immutable exports

The asymmetry in the prohibitions against assignments to
explicitly and implicitly exported variables reflects the fact
that the violation can be determined for implicitly exported
variables only when the importing library is expanded.

7.7. Compound library names

Library names are compound. This differs from the treat-
ment of identifiers in the rest of the language. Using com-
pound names reflects experience across programming lan-
guages that a structured top-level name space is necessary
to avoid collisions. Embedding a hierarchy within a single
string or symbol is certainly possible. However, in Scheme,
list data is the natural means for representing hierarchical
structure, rather than encoding it in a string or symbol.
The hierarchical structure makes it easy to formulate poli-
cies for choosing unique names or possible storage formats
in a file system. See appendix G. Consequently, despite the
syntactic complexity of compound names, and despite the

potential mishandling of the hierarchy by implementations,
the editors chose the list representation.

7.8. Versioning

Libraries and import clauses optionally carry versioning in-
formation. This allows reflecting the development history
of a library, but also significantly increases the complex-
ity of the library system. Experience with module systems
gathered in other languages as well as with shared libraries
at the operating-system level consistently indicates that re-
lying only on the name of a module for identification causes
conflicts impossible to rectify in the absence of version-
ing information, and thus diminishes the opportunities for
sharing code. Therefore, versioning is part of the library
system.

7.9. Treatment of different versions

Implementations are encouraged to prohibit two libraries
with the same name but different versions to coexist within
the same program. While this prevents the combination of
libraries and programs that require different versions of the
same library, it eliminates the potential for having multi-
ple copies of a library’s state, thus avoiding problems ex-
perienced with other shared-library mechanisms, including
Windows DLLs and Unix shared objects.

8. Top-level programs

The notion of “top-level program” is new in R6RS and
replaces the notion of “Scheme program” in R5RS. The
two are quite different: While a R6RS top-level program
is defined to be a complete, textual entity, an R5RS pro-
gram can evolve by being entered piecemeal into a run-
ning Scheme system. Many Scheme systems have interac-
tive command-line environments based on the semantics of
R5RS programs. However, the specification of R5RS pro-
grams is not really sufficient to describe how to operate
an arbitrary Scheme system: The R5RS is ambiguous on
some aspects of the semantics such as binding. Moreover,
R5RS’s load procedure does say how to load source code
into the running system; the pragmatics of load would
often make compiling programs before execution problem-
atic, in particular with regard to macros. Furthermore,
Scheme implementations handle treatment of and recovery
from errors in different ways.

Tightening the specification of programs from R5RS would
have been possible, but could have restricted the design
employed by Scheme implementations in undesirable ways.
Moreover, alternative approaches to structuring the user
interface of a Scheme implementation have emerged since
R5RS. Consequently, R6RS makes no attempt at trying to

8 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

specify the semantics of programs as in R5RS; the design of
an interactive environment is now completely in the hands
of the implementors. On the other hand, being able to
distribute portable programs is one of the goals of the R6RS
process. As a result, the notion of top-level program was
added to the report.

By allowing the interleaving of definitions and expressions,
top-level programs support exploratory and interactive de-
velopment, without imposing unnecessary organizational
overhead on code that might not be intended for reuse.

9. Primitive syntax

9.1. Unspecified evaluation order

The order in which the subexpressions of an application
are evaluated is unspecified, as is the order in which cer-
tain subexpressions of some other forms such as letrec

are evaluated. While this causes occasional confusion, it
encourages programmers to write programs that do not
depend on a specific evaluation order, and thus may be
easier to read. Moreover, it allows the programmer to ex-
press that the evaluation order really does not matter for
the result. A secondary consideration is that some com-
pilers are able to generate better code if they can choose
evaluation order.

10. Expansion process

The description of macro expansion in R6RS is consider-
ably more involved than in R5RS: One reason is that the
specification of expansion in R5RS is ambiguous in several
important respects. For example, R5RS does not specify
whether define is a binding form. Also, it was not clear
whether definitions of macros had to precede their uses.
The fact that the set of available bindings may influence the
matching process of macro expansion further complicates
matters. The specific algorithm R6RS describes is one of
the simplest expansion strategies that addresses these ques-
tions. It has the advantage that it visits every subform of
the source code only once.

The description of the expansion process specifically avoids
specifying the recursive case, where a macro use expands
into a definition whose binding would influence the expan-
sion of the macro use after the fact, as this might lead to
confusing programs. Implementations should detect such
cases as syntax violations.

11. Base library

11.1. Library organization

The libraries of the Scheme standard are organized ac-
cording to projected use. Hence, the (rnrs base (6))

library exports procedures and syntactic abstractions that
are likely to be useful for most Scheme programs and li-
braries. Conversely, each of the libraries relegated to the
separate report on libraries is likely to be missing from
the imports of a substantial number of programs and li-
braries. Naturally, the specific decisions about this orga-
nization and the separation of concerns of the libraries are
debatable, and represent a best attempt of the editors.

A number of secondary criteria were also used in choosing
the exports of the base library. In particular, macros trans-
formers defined using the facilities of the base library are
guaranteed to be hygienic; hygiene-breaking transformers
are only available through the (rnrs syntax-case (6))

library.

Note that (rnrs base (6)) is not a “primitive library” in
the sense that all other libraries of the Scheme standard can
be implemented portably using only its exports. Moreover,
the library organization is generally not layered from more
primitive to more advanced libraries, even though some
libraries can certainly be implemented in terms of others.
Such an organization would have little benefit for users and
may not reflect the internal organization of any particular
implementation. Instead, libraries are organized by use.

The distinction between primitive and derived features was
removed from the report for similar reasons.

11.2. Bodies

In library bodies and local bodies, all definitions must pre-
cede all expressions. R6RS treats bodies in top-level pro-
grams as a special case. Allowing definitions and expres-
sions to be mixed in top-level programs has ugly semantics,
and introduces a special case, but was allowed as a conces-
sion to convenience when constructing programs rapidly
via cut and paste.

Definitions are not interchangeable with expressions, so
definitions cannot be allowed to appear wherever expres-
sions can appear. Composition of definitions with expres-
sions therefore must be restricted in some way. The ques-
tion is what those restrictions should be.

Historically, top-level definitions in Scheme have had a dif-
ferent semantics from definitions in bodies. In a body, defi-
nitions serve as syntactic sugar for the bindings of a letrec

(or letrec* in R6RS) that is implicit at the head of every
body.

That semantics can be stretched to cover top-level pro-
grams by converting expressions to definitions of ignored
variables, but does not easily generalize to allow definitions
to be placed anywhere within expressions. Different gen-
eralizations of definition placement are possible, however
a survey of current Scheme code found surprisingly few
places where such a generalization would be useful.

11. Base library 9

If such a generalization were adopted, programmers who
are familiar with Java and similar languages might ex-
pect definitions to be allowed in the same kinds of contexts
that allow declarations in Java. However, Scheme defini-
tions have letrec* scope, while Java declarations (inside
a method body) have let* scope and cannot be used to
define recursive procedures. Moreover, Scheme’s begin ex-
pressions do not introduce a new scope, while Java’s curly
braces do introduce a new scope. Also, flow analysis is
nontrivial in higher order languages, while Java can use a
trivial flow analysis to reject programs with undefined vari-
ables. Furthermore, Scheme’s macro expander must locate
all definitions, while Java has no macro system. And so on.
Rather than explain how those facts justify restricting def-
initions to appear as top-level forms of a body, it is simpler
to explain that definitions are just syntactic sugar for the
bindings of an implicit letrec* at the head of each body,
and to explain that the relaxation of that restriction for
top-level bodies is (like several other features of top-level
programs) an ad-hoc special case.

11.3. Export levels

The syntax-rules and identifier-syntax forms are
used to create macro transformers and are thus needed
only at expansion time, i.e., meta level 1.

The identifiers unquote, unquote-splicing, =>, and else

serve as literals in the syntax of one or more syntactic
forms; e.g., else serves as a literal in the syntax of cond
and case. Bindings of these identifiers are exported from
the base library so that they can be distinguished from
other bindings of these identifiers or renamed on import.
The identifiers ..., , and set! serve as literals in the syn-
tax of syntax-rules and identifier-syntax forms and
are thus exported along with those forms with level 1.

11.4. Binding forms

The let-values and let-values* forms are compatible
with SRFI 11 [16].

11.5. Equivalence predicates

11.5.1. Treatment of procedures

The definition of eqv? allows implementations latitude in
their treatment of procedures: implementations are free
either to detect or to fail to detect that two procedures
are equivalent to each other, and can decide whether or
not to merge representations of equivalent procedures by
using the same pointer or bit pattern to represent both.
Moreover, they can use implementation techniques such as

inlining and beta reduction that duplicate otherwise equiv-
alent procedures.

11.5.2. Equivalence of NaNs

The basic reason why the behavior of eqv? is not specified
on NaNs is that the IEEE-754 standard does not say much
about how the bits of a NaN are to be interpreted, and
explicitly allows implementations of that standard to use
most of a NaN’s bits to encode implementation-dependent
semantics. The implementors of a Scheme system should
therefore decide how eqv? should interpret those bits.

Arguably, R6RS should require

(let ((x 〈expression〉)) (eqv? x x))

to evaluate to #t when 〈expression〉 evaluates to a number
object; both R5RS and R6RS imply this for certain other
types, and for most numbers objects, but not for NaNs.
Since the IEEE 754 and draft IEEE 754R [19] both say
that the interpretation of a NaN’s payload is left up to
implementations, and implementations of Scheme often do
not have much control over the implementation of IEEE
arithmetic, it would be unwise for R6RS to insist upon the
truth of

(let ((x 〈expression〉))
(or (not (number? x))

(eqv? x x)))

even though that expression is likely to evaluate to #t in
most systems. For example, a system with delayed boxing
of inexact real number objects might box the two argu-
ments to eqv? separately, the boxing process might involve
a change of precision, and the two separate changes of pre-
cision may result in two different payloads.

When x and y are flonums represented in IEEE floating
point or similar, it is reasonable to implement (eqv? x y)
by a bitwise comparison of the floating-point representa-
tions. R6RS should not require this, however, because

1. R6RS does not require that flonums be represented by
a floating-point representation,

2. the interpretation of a NaN’s payload is explic-
itly implementation-dependent according to both the
IEEE-754 standard and the current draft of its pro-
posed replacement, IEEE 754R, and

3. the semantics of Scheme should remain independent
of bit-level representations.

For example, IEEE 754, IEEE 754R, and the draft R6RS
all allow the external representation +nan.0 to be read as
a NaN whose payload encodes the input port and position
at which +nan.0 was read. This is no different from any
other external representation such as (), #(), or 324. An
implementation can have arbitrarily many bit-level repre-
sentations of the empty vector, for example, and some do.

10 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

That is why the behavior of the eq? and eqv? procedures
on vectors cannot be defined by reference to bit-level rep-
resentations, and must instead be defined explicitly.

11.5.3. eq?

It is usually possible to implement eq? much more effi-
ciently than eqv?, for example, as a simple pointer compar-
ison instead of as some more complicated operation. One
reason is that it may not be possible to compute eqv? of
two number objects in constant time, whereas eq? imple-
mented as pointer comparison will always finish in constant
time. The eq? predicate may be used like eqv? in appli-
cations using procedures to implement objects with state
since it obeys the same constraints as eqv?.

11.6. Arithmetic

11.6.1. Full numerical tower

R5RS does not require implementations to support the full
numeric tower. Consequently, writing portable R5RS pro-
grams that perform substantial arithmetic is difficult; it is
unnecessarily difficult even to write programs whose arith-
metic is portable between different implementations in the
same category. The portability problems were most easily
solved by requiring all implementations to support the full
numerical tower.

11.6.2. IEEE-754 conformance

As mentioned in chapter 3, the treatment of infinities,
NaNs and -0.0, if present in a Scheme implementation, are
in line with IEEE 754 [18] and IEEE 754R [19]. Analo-
gously, the specification of branch cuts for certain transcen-
dental functions have been changed from R5RS to conform
to the IEEE standard.

11.6.3. Transcendental functions

The specification of the transcendental functions follows
Steele [37], which in turn cites Penfield [26]; refer to these
sources for more detailed discussion of branch cuts, bound-
ary conditions, and implementation of these functions.

11.6.4. Domains of numerical predicates

The domains of the finite?, infinite?, and nan? pro-
cedures could be expanded to include all number objects,
or perhaps even all objects. However, R6RS restricts them
to real number objects. Expanding nan? to complex num-
ber objects would involve at least some arbitrariness; not
expanding its domain while expanding the domains of the

other two would introduce an irregularity into the domains
of these three procedures, which are likely to be used to-
gether. It is easier for programmers who wish to use these
procedures with complex number objects to express their
intent in terms of the real-only versions than it would be
for the editors to guess their intent.

11.6.5. Numerical types

Scheme’s numerical types are the exactness types exact and
inexact, the tower types integer, rational, real, complex,
and number, and the Cartesian product of the exactness
types with the tower types, where 〈t1, t2〉; is regarded as a
subtype of both t1 and t2.

These types have an aesthetic symmetry to them, but they
are not equally important In practice, there is reason to
believe that the most important numerical types are the
exact integer objects, the exact rational number objects,
the inexact real number objects, and the inexact complex
number objects. This section explores one of the reasons
those four types are important in practice, and why real
number objects have an exact zero as their imaginary part
in R6RS (a change from R5RS).

11.6.6. Closure Properties

Each of the four types mentioned above corresponds to a
set of values that turns up repeatedly as the natural domain
or range of the functions that are computed by Scheme’s
standard procedures. The reason these types turn up so
often is that they are closed under certain sets of opera-
tions.

The exact integer objects, for example, are closed under
the integral operations of addition, subtraction, and mul-
tiplication. The exact rational number objects are closed
under the rational operations, which consist of the inte-
gral operations plus division (although division by zero is
a special case). The real number objects (and inexact real
number objects) are closed under some (often inexact) in-
terpretation of rational and irrational operations such as
exp and sin, but are not closed under operations such as
log, sqrt, and expt. The complex (and inexact complex)
number objects are closed under the largest set of opera-
tions.

Representation-specific operations

A naive implementation of Scheme’s arithmetic operations
is slow compared to the arithmetic operations of most other
languages, mainly because most operations must perform
case dispatch on the representation types of their argu-
ments. The potential for this case dispatch arises when
the type of an operation’s argument is represented by a

11. Base library 11

union of two or more representation types, or because the
operation must raise an exception when given an argument
of an incorrect type. (The second reason can be regarded
as a special case of the first.)

To make Scheme’s arithmetic more efficient, many imple-
mentations provide sets of operations whose domain is re-
stricted to a single representation type, and which are not
expected to raise an exception when given arguments of
incorrect type when used in an unsafe mode.

Alternatively, or in addition, several compilers perform
a flow analysis that attempts to infer the representation
types of expressions. When a single representation type can
be inferred for each argument of an operation, and those
types match the types expected by some representation-
specific version of the operation, then the compiler can
substitute the specific version for the more general version
that was specified in the source code.

Flow analysis

Flow analysis is performed by solving the type and interval
constraints that arise from such things as:

• the types of literal constants, e.g. 2 is an exact integer
object that is known to be within the interval [2, 2]

• conditional control flow that is predicated on
known inequalities, e.g., (if (< i n) 〈expression1〉
〈expression2〉)

• conditional control flow that is predicated on known
type predicates, e.g., (if (real? x) 〈expression1〉
〈expression2〉)

• the closure properties of known operations (for ex-
ample, (+ flonum1 flonum2) always evaluates to a
flonum)

The purpose of flow analysis (as motivated in this section)
is to infer a single representation type for each argument
of an operation. That places a premium on predicates and
closure properties from which a single representation type
can be inferred.

In practice, the most important single representation types
are fixnum, flonum, and compnum. (A compnum is a pair
of flonums, representing an inexact complex number ob-
ject.) These are the representation types for which a short
sequence of machine code can be generated when the rep-
resentation type is known, but for which considerably less
efficient code will probably have to be generated when the
representation type cannot be inferred.

The fixnum representation type is not closed under any op-
eration of R5RS, so it is hard for flow analysis to infer the

fixnum type from portable code. Sometimes the combina-
tion of a more general type (e.g., exact integer object) and
an interval (e.g., [0, n), where n is known to be a fixnum)
can imply the fixnum representation type. Adding fixnum-
specific operations that map fixnums to fixnums greatly
increases the number of fixnum representation types that
a compiler can infer.

The flonum representation type is not closed under oper-
ations such as sqrt and expt, so flow analysis tends to
break down in the presence of those operations. This is
unfortunate, because those operations are normally used
only with arguments for which the result is expected to be
a flonum. Adding flonum-specific versions such as flsqrt

and flexpt improves the effectiveness of flow analysis.

R5RS creates a more insidious problem by defining (real?

z) to be true if and only if (zero? (imag-part z)) is
true. This means, for example, that -2.5+0.0i is real. If
-2.5+0.0i is represented as a compnum, then the com-
piler cannot rely on x being a flonum in the consequent of
(if (real? x) 〈expression1〉 〈expression2〉). This prob-
lem could be fixed by writing all of the arithmetic opera-
tions so that any compnum with a zero imaginary part is
converted to a flonum before it is returned, but that merely
creates an analogous problem for compnum arithmetic, as
explained below. R6RS adopted a proposal by Brad Lucier
to fix the problem: (real? z) is now true if and only if
(imag-part z) is an exact zero.

The compnum representation type is closed under virtu-
ally all operations, provided no operation that accepts two
compnums as its argument ever returns a flonum. To work
around the problem described in the paragraph above,
several implementations automatically convert compnums
with a zero imaginary part to the flonum representation.
This practice virtually destroys the effectiveness of flow
analysis for inferring the compnum representation, so it
is not a good workaround. To improve the effectiveness
of flow analysis, it is better to change the definition of
Scheme’s real number objects as described in the para-
graph above.

div and mod

Given arithmetic on exact integer objects of arbitrary pre-
cision, it is a trivial matter to derive signed and unsigned
integer types of finite range from it by modular reduction.
For example 32-bit signed two-complement arithmetic be-
haves like computing with the residue classes “mod 232”,
where the set {−231, . . . , 231 − 1} has been chosen to rep-
resent the residue classes. Likewise, unsigned 32-bit arith-
metic also behaves like computing “mod 232”, but with a
different set of representatives {0, . . . , 232 − 1}.
Unfortunately, the R5RS operations quotient, remainder,
and modulo are not ideal for this purpose. In the fol-
lowing example, remainder fails to transport the additive

12 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

group structure of the integers over to the residues modulo
3.

(remainder (+ -2 3) 3) =⇒ 1,

(remainder (+ (remainder -2 3)

(remainder 3 3))

3) =⇒ -2

In fact, modulo should have been used, producing residues
in {0, 1, 2}. For modular reduction with symmetric
residues, i.e., in {−1, 0, 1} in the example, it is necessary
to define a more complicated reduction altogether.

Therefore, quotient, remainder, and modulo have been
replaced in R6RS by the div, mod, div0, and mod0 pro-
cedures, which are more useful when implementing modu-
lar reduction. The underlying mathematical functions div,
mod, div0, and mod0 (see report section 11.7.3) have been
adapted from the div and mod operations by Egner et
al. [11]. They differ in the representatives from the residue
classes they return: div and mod always compute a non-
negative residue, whereas div0 and mod0 compute a residue
from a set centered on 0. The former can be used, for exam-
ple, to implement unsigned fixed-width arithmetic, whereas
the latter correspond to two’s-complement arithmetic.

These operations differ slightly from the div and mod oper-
ations from Egner et al. The latter make both operations
available through a single pair of operations that distin-
guish between the two cases for residues by the sign of the
divisor (as well as returning 0 for a zero divisor). Splitting
the operations into two sets of procedures avoids potential
confusion.

The procedures modulo, remainder, and quotient from
R5RS can easily be defined in terms of div and mod.

11.6.7. Numerical predicates

The behavior of the numerical type predicates complex?,
real?, rational?, and integer? is motivated by clo-
sure properties described in section 11.6.6. Conversely,
the procedures real-valued?, rational-valued?, and
integer-valued? test whether a given number object can
be coerced to the specified type without loss of numerical
accuracy.

11.6.8. Notes on individual procedures

round The round procedure rounds to even for consistency
with the default rounding mode specified by the IEEE
floating-point standard.

sqrt The behavior of sqrt is consistent with the IEEE
floating-point standard.

number->string If z is an inexact number object repre-
sented using binary floating point, and the radix is 10,

then the expression listed in the specification is nor-
mally satisfied by a result containing a decimal point.
The unspecified case allows for infinities, NaNs, and
representations other than binary floating-point.

11.7. Characters and strings

While R5RS specifies characters and strings in terms of its
own, limited character set, R6RS specifies characters and
strings in terms of Unicode. The primary goal of the de-
sign change was to improve the portability of Scheme pro-
grams that manipulate text, while preserving a maximum
of backward compatibility with R5RS.

R6RS defines characters to be representations of Unicode
scalar values, and strings to be indexed sequences of char-
acters. This is a different representation for Unicode text
than the representations chosen by some other program-
ming languages such as Java or C#, which use UTF-16
code units as the basis for the type of characters.

The representation of Unicode text corresponds to the low-
est semantic level of the Unicode standard: The Unicode
standard specifies most semantic properties in terms of
Unicode scalar values. Thus, Unicode strings in Scheme
allow the straightforward implementation of semantically
sensitive algorithms on strings in terms of these scalar val-
ues.

In contrast, UTF-16 is a specific encoding for Unicode text,
and performing semantic manipulation on UTF-16 repre-
sentations of text is awkward. Choosing UTF-16 as the
basis for the string representation would have meant that
a character object potentially carries no semantic informa-
tion at all, as surrogates have to be combined pairwise to
yield the corresponding Unicode scalar value. (As a result,
Java provides some semantic operations on Unicode text
in two overloadings, one for character objects and one for
integers that are Unicode scalar values.)

The surrogates cover a numerical range deliberately omit-
ted from the set of Unicode scalar values. Hence, sur-
rogates have no representation as characters—they are
merely an artifact of the design of UTF-16. Including sur-
rogates in the set of characters introduces complications
similar to the complications of using UTF-16 directly. In
particular, most Unicode consortium standards and rec-
ommendations explicitly prohibit unpaired surrogates, in-
cluding the UTF-8 encoding, the UTF-16 encoding, the
UTF-32 encoding, and recommendations for implementing
the ANSI C wchar t type. Even UCS-4, which originally
permitted a larger range of values that includes the surro-
gate range, has been redefined to match UTF-32 exactly.
That is, the original UCS-4 range was shrunk and surro-
gates were excluded.

Arguably, a higher-level model for text could be used as
the basis for Scheme’s character and string types, such as

11. Base library 13

grapheme clusters. However, no design satisfying the goals
stated above was available when the report was written.

11.8. Symbols

Symbols have exactly the properties needed to represent
identifiers in programs, and so most implementations of
Scheme use them internally for that purpose. Symbols are
useful for many other applications; for instance, they may
be used the way enumerated values are used in C and Pas-
cal.

11.9. Control features

11.9.1. call-with-current-continuation

A common use of call-with-current-continuation is
for structured, non-local exits from loops or procedure bod-
ies, but in fact call-with-current-continuation is use-
ful for implementing a wide variety of advanced control
structures.

Most programming languages incorporate one or more
special-purpose escape constructs with names like exit,
return, or even goto. In 1965, however, Peter Landin [23]
invented a general-purpose escape operator called the J-
operator. John Reynolds [28] described a simpler but
equally powerful construct in 1972. The catch special
form described by Sussman and Steele in the 1975 report
on Scheme is exactly the same as Reynolds’s construct,
though its name came from a less general construct in
MacLisp. Several Scheme implementors noticed that the
full power of the catch construct could be provided by a
procedure instead of by a special syntactic construct, and
the name call-with-current-continuation was coined
in 1982. This name is descriptive, but opinions differ on
the merits of such a long name, and some people use the
name call/cc instead.

11.9.2. dynamic-wind

The dynamic-wind procedure was added more recently in
R5RS. It enables implementing a number of abstractions
related to continuations, such as implementing a general
dynamic environment, and making sure that finalization
code runs when some dynamic extent expires. More gen-
erally, the dynamic-wind procedure provides a guarantee
that

(dynamic-wind before thunk after)

cannot call thunk unless before has been called, and it can-
not leave the dynamic extent of the call to thunk with-
out calling after . These evaluations are never nested. As
this guarantee is crucial for enabling many of the uses of
call-with-current-continuation and dynamic-wind,
both are specified jointly.

11.9.3. Multiple values

Many computations conceptually return several results.
Scheme expressions implementing such computations can
return the results as several values using the values pro-
cedure. Of course, such expressions could alternatively
return the results as a single compound value, such as
a list, vector, or a record. However, values in programs
usually represent conceptual wholes; in many cases, mul-
tiple results yielded by a computation lack this coherence.
Moreover, this would be inefficient in many implementa-
tions, and a compiler would need to perform significant
optimization to remove the boxing and unboxing inherent
in packaging multiple results into a single values. Most
importantly, the mechanism for multiple values in Scheme
establishes a standard policy for returning several results
from an expression, which makes constructing interfaces
and using them easier.

R6RS does not specify the semantics of multiple values
completely. In particular, it does not specify what happens
when several (or zero) values are returned to a continuation
that implicitly accepts only one value. In particular:

((lambda (x) x) (values 1 2))

=⇒ unspecified

Whether an implementation must raise an exception when
evaluating such an expression, or should exhibit some
other, non-exceptional behavior is a contentious issue.
Variations of two different and fundamentally incompat-
ible positions on this issue exist, each with its own merits:

1. Passing the wrong number of values to a continuation
is typically a violation, one that implementations ide-
ally detect and report.

2. There is no such thing as returning the wrong num-
ber of values to a continuation. In particular, contin-
uations not created by begin or call-with-values

should ignore all but the first value, and treat zero
values as one unspecified value.

R6RS allows an implementation to take either posi-
tion. Moreover, it allows an implementation to let set!,
vector-set!, and other effect-only operators to pass zero
values to their continuations, preventing a program from
making obscure use of the return value. This causes a po-
tential compatibility problem with R5RS, which specifies
that such expression return a single unspecified value, but
the benefits of the change were deemed to outweigh the
costs.

11.10. Macro transformers

11.10.1. syntax-rules

While the first subform of 〈srpattern〉 of a 〈syntax rule〉
in a syntax-rules form (see report section 11.19) may be

14 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

an identifier, the identifier is not involved in the matching
and is not considered a pattern variable or literal identifier.
This is actually important, as the identifier is most often
the keyword used to identify the macro. The scope of the
keyword is determined by the binding form or syntax def-
inition that binds it to the associated macro transformer.
If the keyword were a pattern variable or literal identifier,
then the template that follows the pattern would be within
its scope regardless of whether the keyword were bound by
let-syntax, letrec-syntax, or define-syntax.

12. Formal semantics

The operational semantics in report chapter A replaces the
denotational semantics in R5RS. The denotational seman-
tics in R5RS has several problems, most seriously its in-
complete treatment of the unspecific evaluation order of
applications: the denotational semantics suggests that a
single unspecified order is used. Modelling nondetermin-
ism is generally difficult with denotational semantics, and
an operational semantics allows specifying the unspecified
evaluation order precisely.

13. Unicode

13.1. Case mapping

The various case-mapping procedures of the (rnrs

unicode (6)) library all operate in a locale-independent
manner. The Unicode standard also offers locale-sensitive
case operations, not implemented by the procedures from
the (rnrs unicode (6)) library. While the library does
not make available the full spectrum of case-related func-
tionality defined by the Unicode standard, it does provide
the most commonly used procedures. In particular, this
strategy has allowed providing procedures mostly compat-
ible with those provided by R5RS. (A minor exception
is the case-insensitive procedures for string comparison.
However, it is unlikely that this affects many existing pro-
grams.) Providing locale-sensitive operations would have
meant significant novel design effort without significant
precedent, which is why they are not part of R6RS.

The case-mapping procedures operating on characters are
not sufficient for implementing case mapping on strings.
For example, the upper-case version of the German “ß” in
a string is “SS”. As char-upcase can only return a single
character, it must return ß for ß. This limits the useful-
ness of the procedures operating on characters, but pro-
vides compatibility with R5RS sufficient for many existing
applications. Moreover, it provides direct access to the cor-
responding attributes of the Unicode character database.

14. Bytevectors

Bytevectors are a representation for binary data, based on
SRFI 74 [32]. The primary motivation for including them

in R6RS was to enable binary I/O. Positions in bytevectors
always refer to certain bytes or octets. However, the op-
erations of the (rnrs bytevectors (6)) library provide
access to binary data in various byte-aligned formats, such
as signed and unsigned integers of various widths, IEEE
floating-point representations, and textual encodings. This
differs notably from representations for binary data as ho-
mogeneous vectors of numbers. In settings related to I/O,
an application often needs to access different kinds of en-
tities from a single binary block. Providing operations for
them on a single datatype considerably reduces both pro-
gramming effort and library size.

Bytevectors can also be used to encode sequences of un-
boxed number objects. Unencapsulated use of bytevectors
for this purpose may lead to aliasing, which may reduce the
effectiveness of compiler optimizations. However, sealed-
ness and opacity of records, together with bytevectors,
make it possible to construct a portable implementation
for new data types that provides fast and memory-efficient
arrays of homogeneous numerical data.

15. List utilities

The (rnrs lists (6)) library provides a small number
of useful procedures operating on lists, including several
procedures from R5RS. The goal of the library is to pro-
vide only procedures likely to be useful for many pro-
grams. Consequently, the selection represented by (rnrs

lists (6)) is less exhaustive than the widely implemented
SRFI 1 [30]. Several changes were made with respect to the
corresponding procedures SRFI 1 to simplify the specifica-
tion, and to establish uniform naming conventions.

15.1. Notes on individual procedures

memp, member, memv, and memq Although they are ordi-
narily used as predicates, memp, member, memv, and
memq, do not have question marks in their names, be-
cause they return useful values rather than just #t or
#f.

16. Sorting

The procedures of the (rnrs sorting (6)) library pro-
vide simple interfaces to sorting algorithms useful to many
programs. In particular, list-sort and vector-sort

guarantee stable sorting using O(n lg n) calls to the com-
parison procedure. Straightforward implementations of
merge sort [7] have the desired properties. Note that, at
least with merge sort, stability carries no significant imple-
mentation or performance burden.

The choice of “strictly less than” for the comparison rela-
tion is consistent with the most common choice of existing

17. Control structures 15

Scheme libraries for sorting. Moreover, using a procedure
returning three possible values (for less than, equal, and
greater than) instead of a boolean comparison procedure
would make calling the sorting procedures less convenient,
with no discernible performance advantage.

The specification of the vector-sort! procedure is meant
to allow an implementation using quicksort [17], hence the
O(n2) bound on the number of calls to the comparison
procedure, and the omission of the stability requirement.

17. Control structures

17.1. when and unless

The when and unless forms are syntactic sugar for one-
armed if expressions. Because each incorporates an im-
plicit begin, they are sometimes more convenient than one-
armed if. Some programmers always use when and unless

in lieu of one-armed if to make clear when a one-armed
conditional is being used.

17.2. case-lambda

The case-lambda form allows constructing procedures
that distinguish different numbers of arguments. Using
case-lambda makes this considerably easier than decon-
structing a list containing optional arguments explicitly.
Moreover, Scheme implementations might optimize dis-
patch on the number of arguments when expressed as
case-lambda, which is considerably harder for code that
explicitly deconstructs argument lists.

18. Records

18.1. Syntactic layer

While the syntactic layer can be expressed portably in
terms of the procedural layer, standardizing a particular
surface syntax facilitates communication via code.

Moreover, the syntactic layer is designed to allow
expansion-time determination of record characteristics, in-
cluding field offsets, so that, for example, record accesses
can be reduced to simple memory indirects without flow
analyses or any other nontrivial compiler support. (This
property may be lost if the parent-rtd clause is present,
and the parent is thus not generally known until run time.)
Thus, the syntactic layer facilitates the development of ef-
ficient portable libraries that define and use record types
and can serve as a basis for other syntactic record definition
constructs.

18.2. Positional access and field names

The record and field names passed to make-record-type-

descriptor and appearing in the syntactic layer are for in-
formational purposes only, e.g., for printers and debuggers.
In particular, the accessor and mutator creation routines
do not use names, but rather field indices, to identify fields.
Thus, field names are not required to be distinct in the pro-
cedural or syntactic layers. This relieves macros and other
code generators from the need to generate distinct names.

Moreover, not requiring distinctness prevents naming con-
flicts that occur when a field in a base type is renamed such
that it is the same as in an extension Also, the record and
field names are used in the syntactic layer for the gener-
ation of accessor and mutator names, and thus duplicate
field names may lead to accessor and mutator naming con-
flicts.

18.3. Lack of multiple inheritance

Multiple inheritance was considered but omitted from the
records facility, as it raises a number of semantic issues
such as sharing among common parent types.

18.4. Constructor mechanism

The constructor-descriptor mechanism is an infrastructure
for creating specialized constructors, rather than just cre-
ating default constructors that accept the initial values of
all the fields as arguments. This infrastructure achieves full
generality while leaving each level of an inheritance hierar-
chy in control over its own fields and allowing child record
definitions to be abstracted away from the actual number
and contents of parent fields.

The constructor mechanism allows the initial values of the
fields to be specially computed or to default to constant val-
ues. It also allows for operations to be performed on or with
the resulting record, such as the registration of a record for
finalization. Moreover, the constructor-descriptor mecha-
nism allows the creation of such initializers in a modular
manner, separating the initialization concerns of the parent
types from those of the extensions.

18.5. Sealed record types

Record types may be sealed. This feature allows enforcing
abstraction barriers, which is useful in itself, but also allows
more efficient compilation.

In particular, when the implementor of an abstract data
type chooses to represent that ADT by a record type, and
allows one of the record types that represent the ADT to be

16 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

exposed and extended, then the ADT is no longer abstract.
Its implementors must expose enough information to allow
for effective subtyping, and must commit to enough of the
representation to allow those subtypes to continue to work
even as the ADT evolves.

A partial solution is to maintain independence of the child
record type from the specific fields of the parent, particu-
larly by specifying a record constructor descriptor for the
parent type that is independent of its specific fields. When
this is deemed to be insufficient, the record type can be
sealed, thereby preventing the ADT from being subtyped.
(This does not completely eliminate the problem, however,
since the ADT may be extended implicitly, i.e., used as a
delegate for some other type.)

Moreover, making a record type sealed may prevent its ac-
cessors and mutators from becoming polymorphic, which
would make effective flow analysis and optimization diffi-
cult. This is particularly relevant for Scheme implementa-
tions that use records to implement some of Scheme’s other
primitive data types such as pairs.

19. Conditions and exceptions

19.1. Exceptions

The goals of the exception mechanism are to help program-
mers share code which relies on exception handling, and to
provide information on violations of specifications of pro-
cedures and syntactic forms. This exception mechanism is
a extension of SRFI 34 [22]1, which was primarily designed
to meet the first goal. However, it has proven suitable for
addressing the second goal of dealing with violations as
well. (More on the second goal below in the discussion of
the condition system.)

For some violations such the use of unsupported NaNs
or infinities, as well as other applications, an exception
handler may be able to repair the cause of the exception,
for example by substituting a suitable object for the NaN
or infinity. Therefore, the exception mechanism extends
SRFI 34 by continuable exceptions, and specifies the con-
tinuation of an exception handler

19.2. Conditions

Conditions are values that communicate information about
exceptional situations between parts of a program. Code
that detects an exception may be in a different part of
the program than the code that handles it. In fact, the
former may have been written independently from the lat-
ter. Consequently, to facilitate effective handling of excep-
tions, conditions should communicate as much information

1There is also a small different to SRFI 34, namely that guard calls
raise-continuable instead of raise when re-raising an exception.

as possible as accurately as possible, and still allow effec-
tive handling by code that did not precisely anticipate the
nature of the exception that has occurred.

The (rnrs conditions (6)) library provides two mecha-
nisms to enable this kind of communication:

• subtyping (through record types) among condition
types allows handling code to determine the general
nature of an exception even though it does not antic-
ipate its exact nature,

• compound conditions allow an exceptional situation to
be described in multiple ways.

As an example, a networking error that occurs during a
file operation on a remote drive fits two descriptions: “net-
working error” and “file-system error”. An exception han-
dler might only look for one of the two. Compound con-
ditions are a simple solution to this problem. Moreover,
compound conditions also make providing auxiliary infor-
mation as part of the condition object, such as an error
message, easier.

The standard condition hierarchy makes an important dis-
tinction between errors and violations: An error is an ex-
ceptional situation in the environment, which the program
cannot avoid or prevent. For example, I/O errors are rep-
resented by condition types that are subtypes of &error.
Violations, on the other hand, are exceptional situations
that the program could have avoided. Violations are typi-
cally programming mistakes. The distinction between the
two is not always clear, and it may be possible but inor-
dinately difficult or expensive to detect certain violations.
The use of eval also blurs the distinction. Nevertheless,
many cases do allow distinguishing between errors and vi-
olations. Consequently, exception handlers that handle er-
rors are common, whereas programmers should introduce
exception handlers that handle violations with great care.

20. I/O

20.1. File names

The file names in most common operating systems, despite
their appearance in most cases, are not text: For example,
Unix uses null-terminated byte sequences, and Windows
uses null-terminated sequences of UTF-16 code units. On
Unix, the textual representation of a file name depends on
the locale, an environmental setting. In both cases, a file
name may be an invalid encoding and thus not correspond
to a string. An appropriate representation for file names
that covers these cases while still offering convenient ac-
cess to file-system names through strings is still an open
problem. Therefore, R6RS allows specifying file names as
strings, but also allows an implementation to add its own
representation for file names.

21. File system 17

20.2. File options

The flags specified for file-options represent only a
common subset of meaningful options on popular plat-
forms. The file-options form does not restrict the
〈file-options name〉s, so implementations can extend the
file options by platform-specific flags.

20.3. End-of-line styles

The set of end-of-line styles recognized by the (rnrs io

ports (6)) library is not closed, because end-of-line styles
other than those listed might become commonplace in the
future.

20.4. Error-handling modes

The set of error-handling modes is not closed, because
implementations may support error-handling modes other
than those listed.

20.5. Binary and textual ports

The plethora of widely used encodings for texts makes pro-
viding textual I/O significantly more complicated than the
simple model offered by R5RS. In particular, realistic tex-
tual I/O should address encodings such as UTF-16 that
include a header word determining the “actual” encoding
of the rest of the byte stream, stateful encodings, and tex-
tual formats such as XML, which specify the encoding in
a header line. Consequently, a library implementing tex-
tual I/O should support specifying an encoding upon open-
ing a port, but should also support opening a port in “bi-
nary mode” to determine the encoding and switch to “text
mode”.

In contrast, arbitrary switching between “binary mode”
and “text mode” is difficult to support, as it may inter-
fere with efficient buffering strategies, and because the
semantics may be unclear in the case of stateful encod-
ings. Consequently, the (rnrs io ports (6)) library al-
lows switching from “binary mode” to “text mode” by con-
verting a binary port into a textual port, but not the other
way around. The transcoded-port procedure closes the
binary port to preclude interference between the binary
port and the textual port constructed from it. Applica-
tions that read from sources that intersperse binary and
textual data should open a binary port and use either
bytevector->string or the procedures from the (rnrs

bytevectors (6)) library to convert the binary data to
text.

The separation of binary and textual ports enables creating
ports from both binary and textual sources and sinks. It

also makes creating both binary and textual versions of
many procedures necessary.

20.6. File positions

Transcoded ports do not always support the port-

position and set-port-position! operations: The po-
sition of a transcoded port may not be well-defined, and
may be hard to calculate even when defined, especially
when transcoding is buffered.

20.7. Freshness of standard ports

The ports returned by standard-input-port, standard-
output-port, and standard-error-port are fresh so it
can be safely closed or converted to a textual port without
risking the usability of an existing port.

20.8. Argument conventions

While the (rnrs io simple (6)) library provides mostly
R5RS-compatible procedures for performing textual I/O,
the (rnrs io ports (6)) library uses a different conven-
tion for argument ordering. In particular, the port is
always the first argument. This enables the use of op-
tional arguments for information about the data to be read
or written, such as the range in a bytevector. As this
convention is incompatible with the convention of (rnrs

io simple (6)), corresponding procedures have different
names.

21. File system

The (rnrs files (6)) library provides a minimal set of
procedures useful in many programs: The file-exists?

procedure allows a program to detect the presence of a file
if it is going to overwrite it, and delete-file allows taking
the appropriate action if the old file is no longer useful.

Standardization of procedures that return or pass to an-
other procedure the name of a file is more difficult than
standardization of file-exists? and delete-file, be-
cause strings are either awkward or insufficient for repre-
senting file names on some platforms, such as Unix and
Windows. See section 20.1.

22. Arithmetic

22.1. Fixnums and flonums

Fixnum and flonum arithmetic is already supported by
many systems, mainly for efficiency. Standardization

18 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

of fixnum and flonum arithmetic increases the portabil-
ity of code that uses it. Standardizing the precision of
fixnum and flonum arithmetic would make it inefficient on
some systems, which would defeat its purpose. Therefore,
R6RS specifies the syntax and much of the semantics of
fixnum and flonum arithmetic, but makes the precision
implementation-dependent.

Existing implementations employ different implementation
strategies for fixnums: Some implement the model speci-
fied by R6RS (overflows cause exceptions), some implement
modular arithmetic (overflows “wrap around”), and others
do not handle arithmetic overflows at all. The latter model
violates the safety requirement of R6RS. In programs that
use fixnums instead of generic arithmetic, overflows are
typically programming mistakes. The model chosen for
R6RS has the advantage that such overflows do not get
silently converted into meaningless number objects, and
that the programs gets notified of the violation through
the exception system.

22.2. Bitwise operations

The bitwise operations have been adapted from the oper-
ations described in SRFIs 33 [31] and 60 [20].

22.3. Notes on individual procedures

fx+ and fx* These procedures are restricted to two argu-
ments, because their generalizations to three or more
arguments would require precision proportional to the
number of arguments.

real->flonum This procedure is necessary, because not all
real number objects are inexact, and because some
inexact real number objects may not be flonums.

flround The flround procedure rounds to even for con-
sistency with the default rounding mode specified by
the IEEE floating-point standard.

flsqrt The behavior of flsqrt on −0.0 is consistent with
the IEEE floating-point standard.

23. syntax-case

While many syntax transformers are succinctly expressed
using the high-level syntax-rules form, others cannot
be succinctly expressed. Still others are impossible to
write, including transformers that introduce visible bind-
ings for or references to identifiers that do not appear
explicitly in the input form, transformers that maintain
state or read from the file system, and transformers that
construct new identifiers. The syntax-case system [10]

allows the programmer to write transformers that per-
form these sorts of transformations, and arbitrary addi-
tional transformations, without sacrificing the default en-
forcement of hygiene or the high-level pattern-based syn-
tax matching and template-based output construction pro-
vided by syntax-rules (report section 11.19).

24. Hashtables

24.1. Caching

The specification notes that hashtables are allowed to cache
the results of calling the hash function and equivalence
function, and that any hashtable operation may call the
hash function more than once. Hashtable lookups are often
followed by updates, so caching may improve performance.
Hashtables are free to change their internal representation
at any time, which may result in many calls to the hash
function.

24.2. Immutable hashtables

Hashtable references may be less expensive with immutable
hashtables. Also, the creator of a hashtable may wish to
prevent modifications, particularly by code outside of the
creator’s control.

24.3. Hash functions

The make-eq-hashtable and make-eqv-hashtable con-
structors are designed to hide their hash function. This
allows implementations to use the machine address of an
object as its hash value, rehashing parts of the table as
necessary if a garbage collector moves objects to different
addresses.

25. Enumerations

Many procedures in many libraries accept arguments from
a finite set, or subsets of a finite set to describe a certain
mode of operation, or several flags to describe a mode of
operation. Examples in the R6RS include the endianness
for bytes-object operations, and file and buffering modes
in the I/O library. Offering a default policy for dealing
with such values fosters portable and readable code, much
as records do for compound values, or multiple values for
procedures computing several values. Moreover, represen-
tations of sets from a finite set of options should offer the
standard set operations, as they tend to occur in practice.
One such set operation is the complement, which makes
lists of symbols a less than suitable representation.

Different Scheme implementations have taken different ap-
proaches to this problem in the past, which suggests that

26. Composite library 19

a default policy does more than merely encode what any
sensible programmer would do anyway. As possible uses
occur quite frequently, this particular aspect of interface
construction has been standardized.

26. Composite library

The (rnrs (6)) library is intended as a convenient im-
port for libraries where fine control over imported bindings
is not necessary or desirable. The (rnrs (6)) library ex-
ports all bindings for expand as well as run so that it is
convenient for writing syntax-case macros as well as run-
time code.

The (rnrs (6)) library does not include a few select li-
braries:

• (rnrs eval (6)), as its presence may make creating
self-contained programs more difficult;

• (rnrs mutable-pairs (6)), as its absence from a
program may enable compiler optimizations, and as
mutable pairs might be deprecated in the future;

• (rnrs mutable-strings (6)), for similar reasons as
for (rnrs mutable-pairs (6));

• (rnrs r5rs (6)), as its features are deprecated.

27. Mutable pairs

The presence of mutable pairs causes numerous problems:

• It complicates the specification of higher-order proce-
dures that operate on lists.

• It inhibits certain compiler optimizations such as de-
forestation.

• It complicates reasoning about programs that use lists.

• It complicates the implementation of procedures that
accept variable numbers of arguments.

However, removing mutable pairs from the language en-
tirely would have caused significant compatibility problems
for existing code. As a compromise, the set-car! and
set-cdr! procedures were moved to a separate library.
This facilitates statically determining if a program ever
mutates pairs, encourages writing programs that do not
mutate pairs, and may help deprecating or removing mu-
table pairs in the future.

28. Mutable strings

The presence of mutable strings causes problems similar to
some of the problems caused by the presence of mutable

pairs. Hence, the same reasoning applies for moving the
mutation operations into a separate library.

REFERENCES

[1] Harold Abelson, Gerald Jay Sussman, and Julie Suss-
man. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, Mass., second edition,
1996.

[2] Will Clinger, R. Kent Dybvig, Michael Sperber, and
Anton van Straaten. SRFI 76: R6RS records. http:

//srfi.schemers.org/srfi-76/, 2005.

[3] William Clinger. The revised revised report on
Scheme, or an uncommon Lisp. Technical Report
MIT Artificial Intelligence Memo 848, MIT, 1985
1985. Also published as Computer Science Depart-
ment Technical Report 174, Indiana University, June
1985.

[4] William Clinger and Jonathan Rees. Revised3 report
on the algorithmic language Scheme. SIGPLAN No-
tices, 21(12):37–79, December 1986.

[5] William Clinger and Jonathan Rees. Revised4 report
on the algorithmic language Scheme. Lisp Pointers,
IV(3):1–55, July–September 1991.

[6] William D Clinger and Michael Sperber. SRFI 77:
Preliminary proposal for R6RS arithmetic. http://

srfi.schemers.org/srfi-77/, 2005.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
MIT Press and McGraw-Hill, second edition, 2001.

[8] R. Kent Dybvig. The Scheme Programming Language.
MIT Press, Cambridge, third edition, 2003. http:

//www.scheme.com/tspl3/.

[9] R. Kent Dybvig. SRFI 93: R6RS syntax-case

macros. http://srfi.schemers.org/srfi-93/,
2006.

[10] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
Syntactic abstraction in Scheme. Lisp and Symbolic
Computation, 5(4):295–326, 1992.

[11] Sebastian Egner, Richard Kelsey, and Michael Sper-
ber. Cleaning up the tower: Numbers in Scheme. In
Olin Shivers and Oscar Waddell, editors, Proceedings
of the Fifth Workshop on Scheme and Functional Pro-
gramming, pages 109–120, Snowbird, October 2004.
Indiana University Technical Report TR600.

http://srfi.schemers.org/srfi-76/
http://srfi.schemers.org/srfi-76/
http://srfi.schemers.org/srfi-77/
http://srfi.schemers.org/srfi-77/
http://www.scheme.com/tspl3/
http://www.scheme.com/tspl3/
syntax-case
http://srfi.schemers.org/srfi-93/

20 Revised6 Scheme Rationale (latest erratum: 21 July 2019)

[12] Carol Fessenden, William Clinger, Daniel P. Fried-
man, and Christopher Haynes. Scheme 311 version
4 reference manual. Indiana University, 1983. Indiana
University Computer Science Technical Report 137,
Superseded by [15].

[13] Matthew Flatt and Kent Dybvig. SRFI 83:
R6RS library syntax. http://srfi.schemers.org/

srfi-83/, 2005.

[14] Matthew Flatt and Marc Feeley. SRFI 75: R6RS uni-
code data. http://srfi.schemers.org/srfi-75/,
2005.

[15] Daniel P. Friedman, Christopher Haynes, Eugene
Kohlbecker, and Mitchell Wand. Scheme 84 interim
reference manual. Indiana University, January 1985.
Indiana University Computer Science Technical Re-
port 153.

[16] Lars T Hansen. SRFI 11: Syntax for receiving mul-
tiple values. http://srfi.schemers.org/srfi-11/,
2000.

[17] C. A. R. Hoare. Algorithm 63 (partition); 64 (quick-
sort); 65 (find). Communications of the ACM,
4(7):321–322, 1961.

[18] IEEE standard 754-1985. IEEE standard for binary
floating-point arithmetic, 1985. Reprinted in SIG-
PLAN Notices, 22(2):9-25, 1987.

[19] IEEE 754 revision work. http://grouper.ieee.org/
groups/754/revision.html, 2006.

[20] Aubrey Jaffer. SRFI 60: Integers as bits. http://

srfi.schemers.org/srfi-60/, 2005.

[21] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–
105, 1998.

[22] Richard Kelsey and Michael Sperber. SRFI 34: Excep-
tion handling for programs. http://srfi.schemers.
org/srfi-34/, 2002.

[23] Peter Landin. A correspondence between Algol 60 and
Church’s lambda notation: Part I. Communications
of the ACM, 8(2):89–101, February 1965.

[24] Jacob Matthews and Robert Bruce Findler. An oper-
ational semantics for Scheme. Journal of Functional
Programming, 2007. From http://www.cambridge.

org/journals/JFP/.

[25] MIT Department of Electrical Engineering and Com-
puter Science. Scheme manual, seventh edition,
September 1984.

[26] Paul Penfield Jr. Principal values and branch cuts in
complex APL. In APL ’81 Conference Proceedings,
pages 248–256, San Francisco, September 1981. ACM
SIGAPL. Proceedings published as APL Quote Quad
12(1).

[27] Jonathan A. Rees and Norman I. Adams IV. T: a
dialect of lisp or lambda: The ultimate software tool.
In ACM Conference on Lisp and Functional Program-
ming, pages 114–122, Pittsburgh, Pennsylvania, 1982.
ACM Press.

[28] John C. Reynolds. Definitional interpreters for higher-
order programming languages. In ACM Annual Con-
ference, pages 717–740, July 1972.

[29] Scheme standardization charter. http:

//www.schemers.org/Documents/Standards/

Charter/mar-2006.txt, March 2006.

[30] Olin Shivers. SRFI 1: List library. http://srfi.

schemers.org/srfi-1/, 1999.

[31] Olin Shivers. SRFI 33: Integer bitwise-operation li-
brary. http://srfi.schemers.org/srfi-33/, 2002.

[32] Michael Sperber. SRFI 74: Octet-addressed bi-
nary blocks. http://srfi.schemers.org/srfi-74/,
2005.

[33] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and
Anton van Straaten. Revised6 report on the algorith-
mic language Scheme (Non-Normative appendices).
http://www.r6rs.org/, 2007.

[34] Michael Sperber, R. Kent Dybvig, Matthew Flatt, An-
ton van Straaten, Richard Kelsey, William Clinger,
and Jonathan Rees. Revised6 report on the algorith-
mic language Scheme. http://www.r6rs.org/, 2007.

[35] Michael Sperber, R. Kent Dybvig, Matthew Flatt, An-
ton van Straaten, Richard Kelsey, William Clinger,
and Jonathan Rees. Revised6 report on the algorith-
mic language Scheme (Libraries). http://www.r6rs.
org/, 2007.

[36] Guy Lewis Steele Jr. Rabbit: a compiler for Scheme.
Technical Report MIT Artificial Intelligence Labora-
tory Technical Report 474, MIT, May 1978.

[37] Guy Lewis Steele Jr. Common Lisp: The Language.
Digital Press, Burlington, MA, second edition, 1990.

[38] Guy Lewis Steele Jr. and Gerald Jay Sussman. The
revised report on Scheme, a dialect of Lisp. Technical
Report MIT Artificial Intelligence Memo 452, MIT,
January 1978.

http://srfi.schemers.org/srfi-83/
http://srfi.schemers.org/srfi-83/
http://srfi.schemers.org/srfi-75/
http://srfi.schemers.org/srfi-11/
http://grouper.ieee.org/groups/754/revision.html
http://grouper.ieee.org/groups/754/revision.html
http://srfi.schemers.org/srfi-60/
http://srfi.schemers.org/srfi-60/
http://srfi.schemers.org/srfi-34/
http://srfi.schemers.org/srfi-34/
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1268564&fulltextType=RA&fileId=S0956796807006478
http://www.cambridge.org/journals/JFP/
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1268564&fulltextType=RA&fileId=S0956796807006478
http://www.cambridge.org/journals/JFP/
http://www.schemers.org/Documents/Standards/Charter/mar-2006.txt
http://www.schemers.org/Documents/Standards/Charter/mar-2006.txt
http://www.schemers.org/Documents/Standards/Charter/mar-2006.txt
http://srfi.schemers.org/srfi-1/
http://srfi.schemers.org/srfi-1/
http://srfi.schemers.org/srfi-33/
http://srfi.schemers.org/srfi-74/
http://www.r6rs.org/
http://www.r6rs.org/
http://www.r6rs.org/
http://www.r6rs.org/

References 21

[39] Gerald Jay Sussman and Guy Lewis Steele Jr. Scheme:
an interpreter for extended lambda calculus. Technical
Report MIT Artificial Intelligence Memo 349, MIT,
December 1975.

	Historical background
	Requirement levels
	Numbers
	Infinities, NaNs
	Distinguished -0.0

	Lexical syntax and datum syntax
	Symbol and identifier syntax
	Comments
	Future extensions

	Semantic concepts
	Argument and subform checking
	Safety
	Proper tail recursion

	Entry format
	Libraries
	Syntax
	Local import
	Local modules
	Fixed import and export clauses
	Instantiation and initialization
	Immutable exports
	Compound library names
	Versioning
	Treatment of different versions

	Top-level programs
	Primitive syntax
	Unspecified evaluation order

	Expansion process
	Base library
	Library organization
	Bodies
	Export levels
	Binding forms
	Equivalence predicates
	Arithmetic
	Characters and strings
	Symbols
	Control features
	Macro transformers

	Formal semantics
	Unicode
	Case mapping

	Bytevectors
	List utilities
	Notes on individual procedures

	Sorting
	Control structures
	when and unless
	case-lambda

	Records
	Syntactic layer
	Positional access and field names
	Lack of multiple inheritance
	Constructor mechanism
	Sealed record types

	Conditions and exceptions
	Exceptions
	Conditions

	I/O
	File names
	File options
	End-of-line styles
	Error-handling modes
	Binary and textual ports
	File positions
	Freshness of standard ports
	Argument conventions

	File system
	Arithmetic
	Fixnums and flonums
	Bitwise operations
	Notes on individual procedures

	syntax-case
	Hashtables
	Caching
	Immutable hashtables
	Hash functions

	Enumerations
	Composite library
	Mutable pairs
	Mutable strings
	References

